Metal-Enclosed Interrupter Switchgear
Type SIMOSEC, up to 27.6 kV, ANSI, Air-Insulated, Extendable

Medium-Voltage Switchgear
Catalog HA 41.31 · 2008

Answers for energy.
Contents

<table>
<thead>
<tr>
<th>Application, Requirements</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical uses, features</td>
<td>2 to 4</td>
</tr>
</tbody>
</table>

Technical Data

<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical data, pressure values,</td>
<td></td>
</tr>
<tr>
<td>temperature</td>
<td>5</td>
</tr>
<tr>
<td>Switchgear installation</td>
<td>6</td>
</tr>
<tr>
<td>Shipping data</td>
<td>7</td>
</tr>
</tbody>
</table>

Product Range

<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product range overview, equipment features</td>
<td>8 and 9</td>
</tr>
<tr>
<td>Panels</td>
<td>10 to 18</td>
</tr>
</tbody>
</table>

Design

<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel design</td>
<td>19</td>
</tr>
</tbody>
</table>

Components

<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two/three-position switch-disconnector</td>
<td>20</td>
</tr>
<tr>
<td>Two/three-position switch</td>
<td>21</td>
</tr>
<tr>
<td>Busbars, HV CL (current-limiting) fuse assembly</td>
<td>22 and 23</td>
</tr>
<tr>
<td>Operating mechanisms</td>
<td>24</td>
</tr>
<tr>
<td>Indicating and measuring equipment</td>
<td>25</td>
</tr>
<tr>
<td>Transformers</td>
<td>26 and 27</td>
</tr>
<tr>
<td>Cable connection</td>
<td>28 and 29</td>
</tr>
</tbody>
</table>

Dimensions (in mm/inch)

<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panels</td>
<td>30 to 38</td>
</tr>
<tr>
<td>Floor openings, fixing points</td>
<td>39</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards, specifications, guidelines</td>
<td>40 and 41</td>
</tr>
</tbody>
</table>

Notes

<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invalid: Catalog HA 41.31 - 2007</td>
<td>42</td>
</tr>
</tbody>
</table>
Application

Typical uses
Application, Requirements

Features

SIMOSEC ANSI switchgear is a factory-assembled, type-tested, three-phase, metal-enclosed, indoor switchgear according to ANSI/IEEE C37.20.3 * for single busbars.

Typical uses
SIMOSEC ANSI switchgear is used for power distribution in distribution systems with feeder currents up to 1200 A. Modular space-saving design allows use in:
- Substations, customer transfer substations, distribution substations and switching substations of power supply and public utilities
- Public buildings, such as high-rise buildings, railway stations, hospitals
- Industrial plants

Typical examples
- Office parks
- Airports
- Underground railway stations
- Sewage treatment plants
- Schools
- Shopping centers
- Petroleum industry
- Chemical industry
- Industrial plants
- Textile, paper and food industry

Modular design
- Individual panels, for free combination and extension

Technical features
- Air-insulated indoor switchgear
- Gas-insulated, maintenance-free switching functions for the two/three-position switch
- Three-pole primary enclosure
- Phases arranged one behind the other
- No cross-insulation between phases
- Busbar system at the top or bottom, as required by application
- Air-insulated busbar and cable connection system
- Two/three-position switch, metal-enclosed, with air-insulated primary terminals and gas-insulated switching functions
- Hermetically-sealed (welded) stainless-steel switchgear vessel,
 - For switching devices
 - With welded-in bushings (for electrical connections and mechanical components)
 - With insulating gas SF₆
- Metal-enclosed design
- Pressure relief
 - To the rear and upwards
 - Separately for each compartment
- Air-insulated cable connection system for conventional cable lugs
- Three-phase current transformer, factory-assembled on the feeder bushings
- Integrated low-voltage niche (standard) for installation of low-voltage devices
 - E.g. terminals, pushbuttons
 - MCBs
- Option: Space heaters for severe ambient conditions, e.g. condensation

Reliability
- Type (design) tested with third-party witness
- Standardized and manufactured using numerically controlled machines
- Quality management system according to ISO 9001
- More than 500,000 switchgear panels in operation worldwide for many years
- No cross-insulation between phases

Personal safety
- All switching operations can be performed with closed panel front
- Metal-enclosed switchgear
- HV CL fuses and cable terminations are only accessible when the outgoing feeders are grounded
- Logical mechanical interlocking
- Capacitive voltage detection system for verification of safe isolation from supply
- Grounding of outgoing feeders by means of make-proof grounding switches

Security of operation
- Components, e.g., operating mechanisms, three-position switches proven for years
- Metal-enclosed panels plus metal compartmentalization between busbar and switching device and between switching device and cable connection compartment
- Three-position switch metal-enclosed with gas-insulated switching functions
 - Welded sealed-for-life switchgear vessel
 - No cross-insulation between phases
 - With welded-in bushings for cable connection, busbar and operating mechanism
- Switch operating mechanisms outside switchgear vessel
- Maintenance-free operating mechanism parts

- Mechanical switch position indications integrated in mimic diagram
- Switchgear interlocking system with logical mechanical interlocks

Life-cycle cost-efficiency
Extremely low life-cycle costs and extremely high availability throughout the entire product life cycle as a result of:
- Two/three-position switch with gas-insulated quenching principle
- Minimum space requirement
- Easy switchgear extension

Electrical features
- Rated voltages up to 27.6 kV
- Rated short-circuit current (fused) up to 63 kA at 15 kV and below, and 20 kA at 27.6 kV
- Rated short-time withstand current up to 20 kA, 2 second or 25 kA, 2 seconds
- Rated normal current of feeders
 - Up to 600 A (feeders)
 - Up to 1200 A (panel without switch)
- Rated normal current of busbar up to 1200 A

* Standards see page 40
Technical Data

Electrical data of panels, pressure values, temperature

Complete switchgear

<table>
<thead>
<tr>
<th>Rated insulation level</th>
<th>Rated voltage U_r kV</th>
<th>4.76</th>
<th>15</th>
<th>27.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated short-duration (one minute) power-frequency withstand voltage $U_{p,f}$ kV</td>
<td>19</td>
<td>36</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage $U_{p,peak}$ kV</td>
<td>60</td>
<td>95</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Rated frequency f_r Hz</td>
<td>50/60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated continuous current I_r 1) of busbar</td>
<td>On request A 600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard A 1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated short-circuit current</td>
<td>for switchgear with all feeders fused (panel type FS) kA (sym)</td>
<td>63</td>
<td>63</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>kA (asym)</td>
<td>101</td>
<td>101</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>kA (peak)</td>
<td>164</td>
<td>164</td>
<td>52</td>
</tr>
<tr>
<td>Rated short-time withstand current $I_{t=2s}$ 3)</td>
<td>for switchgear with $I_t = 2s$ rated duration up to kA</td>
<td>20</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Rated peak withstand current I_{peak} 3)</td>
<td>up to kA</td>
<td>52</td>
<td>65</td>
<td>52</td>
</tr>
<tr>
<td>Rated filling pressure p_{ref} 2)</td>
<td>PSI (kPa)</td>
<td>21.8 (150)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum operating pressure p_{min} 2)</td>
<td>at 20 °C/68 °F (absolute)</td>
<td>18.9 (130)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature T 2) for panels without secondary equipment °C/°F</td>
<td>30 to +40 / -22 to +104</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cable switch panel type CS, cable connection panel type CC, cable grounding panel type CG

<table>
<thead>
<tr>
<th>Rated voltage U_r kV</th>
<th>4.76</th>
<th>15</th>
<th>27.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated continuous current I_r 1) 4)</td>
<td>for panel type CS, CG A 600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>only for panel type CC A 600, 1200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated fault closing current I_{fa} 5) only for panel type CS kA (sym)</td>
<td>32</td>
<td>40</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>kA (peak)</td>
<td>52</td>
<td>65</td>
</tr>
</tbody>
</table>

Fuse panel types FS, FU

<table>
<thead>
<tr>
<th>Rated voltage U_r kV</th>
<th>4.76</th>
<th>15</th>
<th>27.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated continuous current I_r 1) 4)</td>
<td>for feeder A 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated peak withstand current I_{peak} 5)</td>
<td>up to kA</td>
<td>164</td>
<td>164</td>
</tr>
<tr>
<td>Rated fault closing current I_{fa} 5) only for panel type FS kA (sym)</td>
<td>101</td>
<td>101</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>kA (peak)</td>
<td>164</td>
<td>164</td>
</tr>
<tr>
<td>Reference dimension "e" 3) for HV CL (current limiting) fuses</td>
<td>mm/inch</td>
<td>53.7/2.1</td>
<td></td>
</tr>
<tr>
<td>Maximum fuse rating</td>
<td>for panel FS-1 A 450E 200E 65E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for panel FS-2 A two 350E two 200E two 65E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for panel FS-3 A three 200E three 200E three 65E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Busbar grounding panel type BG

<table>
<thead>
<tr>
<th>Rated voltage U_r kV</th>
<th>4.76</th>
<th>15</th>
<th>27.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated fault closing current I_{fa} 6)</td>
<td>kA (sym)</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>kA (peak)</td>
<td>52</td>
<td>65</td>
</tr>
</tbody>
</table>

Busbar voltage metering switch panel types MS2, MS3

<table>
<thead>
<tr>
<th>Rated voltage U_r kV</th>
<th>4.76</th>
<th>15</th>
<th>27.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated peak withstand current I_{peak} 5)</td>
<td>up to kA</td>
<td>52</td>
<td>65</td>
</tr>
<tr>
<td>Rated fault closing current I_{fa} 5)</td>
<td>kA (sym)</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>kA (peak)</td>
<td>52</td>
<td>65</td>
</tr>
</tbody>
</table>

Metering panel types MT3, MC3, bus riser panel BR

<table>
<thead>
<tr>
<th>Rated voltage U_r kV</th>
<th>4.76</th>
<th>15</th>
<th>27.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated continuous current I_r 1)</td>
<td>A 600, 1200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) The rated continuous currents apply to ambient temperatures of 40 °C/104 °F.
2) Pressure values for SF6-insulated vessels.
3) The fuse assembly is designed for a reference dimension "e" = 537 mm/21.1 inch.
 With reference dimension "e" = 442 mm/17.4 inch, an extension tube (95 mm/3.7 inch long) is required.
4) Depending on the HV CL fuse links.
5) Fused
6) Without fuses

Metal-Enclosed Interrupter Switchgear Type SIMOSEC, up to 27.6 kV, ANSI, Air-Insulated, Extendable - Siemens HA 41.31 - 2008
Technical Data

Switchgear installation

Room planning

Wall-standing or free-standing arrangement
- Single row
- Double row (for face-to-face arrangement)

Room dimensions
See opposite dimension drawings

Door dimensions
The door dimensions depend on the
- Number of panels in a transport unit
- Height of the panel

Switchgear fastening
- For floor openings and fixing points of the switchgear, see page 39
- Foundations:
 - Steel structure
 - Steel-reinforced concrete

Panel dimensions
See pages 30 to 38

Weight
The weight of a panel depends on the extent to which it is equipped (e.g. with motor operating mechanism, voltage transformer). For details, please refer to page 7.

* Switchgear height 2250 mm / 88.5” or 2550 mm / 100.5”
** Depending on bending radius of cable
*** 950/37.5 distance shown is the space required by the equipment. The actual space must also reflect requirements of applicable codes (e.g. NEC) or standards and regulations.
Transport units for shipping (plan view)

1. T1 = Depth of individual panel
2. Individual panel dimension B1 x T1
3. Transport unit, dimension B2 x T2
4. B3 = Overall width of combination of different individual panels
5. B2 = Width of the transport unit

Transport of individual panels

<table>
<thead>
<tr>
<th>Panel type</th>
<th>Weight kg/lb</th>
<th>Width B1 mm / inch</th>
<th>Height H1 mm / inch</th>
<th>Depth T1 mm / inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable switch panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS1</td>
<td>180/397</td>
<td>375 / 14.8</td>
<td>2250 / 88.6</td>
<td>1230 / 48.4</td>
</tr>
<tr>
<td>CS2</td>
<td>205/452</td>
<td>500 / 19.7</td>
<td>2250 / 88.6</td>
<td>1230 / 48.4</td>
</tr>
<tr>
<td>Fuse switch panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS1</td>
<td>205/452</td>
<td>375 / 14.8</td>
<td>2250 / 88.6</td>
<td>1230 / 48.4</td>
</tr>
<tr>
<td>FS2</td>
<td>230/507</td>
<td>500 / 19.7</td>
<td>2250 / 88.6</td>
<td>1230 / 48.4</td>
</tr>
<tr>
<td>FS3</td>
<td>250/551</td>
<td>750 / 29.5</td>
<td>2250 / 88.6</td>
<td>1230 / 48.4</td>
</tr>
<tr>
<td>Fuse panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FU1</td>
<td>160/353</td>
<td>375 / 14.8</td>
<td>2250 / 88.6</td>
<td>1230 / 48.4</td>
</tr>
<tr>
<td>FU2</td>
<td>185/408</td>
<td>500 / 19.7</td>
<td>2250 / 88.6</td>
<td>1230 / 48.4</td>
</tr>
<tr>
<td>FU3</td>
<td>210/463</td>
<td>750 / 29.5</td>
<td>2250 / 88.6</td>
<td>1230 / 48.4</td>
</tr>
<tr>
<td>Cable connection panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC1</td>
<td>145/320</td>
<td>375 / 14.8</td>
<td>2250 / 88.6</td>
<td>1230 / 48.4</td>
</tr>
<tr>
<td>CC2</td>
<td>170/375</td>
<td>500 / 19.7</td>
<td>2250 / 88.6</td>
<td>1230 / 48.4</td>
</tr>
<tr>
<td>Cable grounding panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG1</td>
<td>180/397</td>
<td>375 / 14.8</td>
<td>2250 / 88.6</td>
<td>1230 / 48.4</td>
</tr>
<tr>
<td>CG2</td>
<td>205/452</td>
<td>500 / 19.7</td>
<td>2250 / 88.6</td>
<td>1230 / 48.4</td>
</tr>
<tr>
<td>Metering panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT3</td>
<td>420/926</td>
<td>750 / 29.5</td>
<td>2250 / 88.6</td>
<td>1230 / 48.4</td>
</tr>
<tr>
<td>Metering cable panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC3</td>
<td>420/926</td>
<td>750 / 29.5</td>
<td>2250 / 88.6</td>
<td>1230 / 48.4</td>
</tr>
<tr>
<td>Metering switch panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS2</td>
<td>350/772</td>
<td>500 / 19.7</td>
<td>2250 / 88.6</td>
<td>1230 / 48.4</td>
</tr>
<tr>
<td>MS3</td>
<td>420/926</td>
<td>750 / 29.5</td>
<td>2250 / 88.6</td>
<td>1230 / 48.4</td>
</tr>
<tr>
<td>Bus riser panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR1</td>
<td>145/320</td>
<td>375 / 14.8</td>
<td>2250 / 88.6</td>
<td>1230 / 48.4</td>
</tr>
<tr>
<td>BR2</td>
<td>170/375</td>
<td>500 / 19.7</td>
<td>2250 / 88.6</td>
<td>1230 / 48.4</td>
</tr>
<tr>
<td>Busbar grounding panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG1</td>
<td>180/397</td>
<td>375 / 14.8</td>
<td>2250 / 88.6</td>
<td>1230 / 48.4</td>
</tr>
</tbody>
</table>

Transport of combinations of different individual panels

<table>
<thead>
<tr>
<th>Transport unit</th>
<th>Overall width B3 mm / inch</th>
<th>Weight * kg/lb</th>
<th>Width B2 mm / inch</th>
<th>Height H2 ** mm / inch</th>
<th>Depth T2 mm / inch</th>
<th>Volume B2 x H2 x T2 m³ / yd³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport unit</td>
<td>≤ 750 / 29.5</td>
<td>70/155</td>
<td>1100 / 43.3</td>
<td>2450 / 96.5</td>
<td>1400 / 56.1</td>
<td>3.8 / 5.0</td>
</tr>
<tr>
<td>Transport unit</td>
<td>≤ 1750 / 58.9</td>
<td>120/265</td>
<td>2200 / 86.6</td>
<td>2450 / 96.5</td>
<td>1400 / 56.1</td>
<td>7.6 / 10.0</td>
</tr>
</tbody>
</table>

* Additional packing weight in kg/lb (without weight of panels)
** Transport unit for air freight, height H2 2610 mm /102.8 inch and width B2 1700 mm /66.9 inch

Packing, transport (examples)

<table>
<thead>
<tr>
<th>Packing</th>
<th>Version</th>
<th>For supply</th>
<th>Transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panels mounted on wooden floor and covered with protection sheeting</td>
<td>For container</td>
<td>Overseas</td>
<td>Ship + truck</td>
</tr>
</tbody>
</table>

Technical Data

Shipping data

Metal-Enclosed Interrupter Switchgear Type SIMOSEC, up to 27.6 kV, ANSI, Air-Insulated, Extendable - Siemens HA 41.31 - 2008
Product Range

Product range overview

Standard panels

<table>
<thead>
<tr>
<th>Panel designation</th>
<th>Panel type</th>
<th>Panel width</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable switch panel</td>
<td>CS1</td>
<td>375 mm / 14.8"</td>
</tr>
<tr>
<td></td>
<td>CS2</td>
<td>500 mm / 19.7"</td>
</tr>
<tr>
<td>Fuse switch panel</td>
<td>FS1</td>
<td>375 mm / 14.8"</td>
</tr>
<tr>
<td></td>
<td>FS2</td>
<td>500 mm / 19.7"</td>
</tr>
<tr>
<td></td>
<td>FS3</td>
<td>750 mm / 29.5"</td>
</tr>
<tr>
<td>Fuse panel</td>
<td>FU1</td>
<td>375 mm / 14.8"</td>
</tr>
<tr>
<td></td>
<td>FU2</td>
<td>500 mm / 19.7"</td>
</tr>
<tr>
<td></td>
<td>FU3</td>
<td>750 mm / 29.5"</td>
</tr>
<tr>
<td>Cable connection panel</td>
<td>CC1</td>
<td>375 mm / 14.8"</td>
</tr>
<tr>
<td></td>
<td>CC2</td>
<td>500 mm / 19.7"</td>
</tr>
<tr>
<td>Cable grounding panel (= cable connection panel with grounding switch)</td>
<td>CG1</td>
<td>375 mm / 14.8"</td>
</tr>
<tr>
<td></td>
<td>CG2</td>
<td>500 mm / 19.7"</td>
</tr>
<tr>
<td>Metering panel</td>
<td>MT3</td>
<td>750 mm / 29.5"</td>
</tr>
<tr>
<td>Metering cable panel</td>
<td>MC3</td>
<td>750 mm / 29.5"</td>
</tr>
<tr>
<td>Metering switch panel</td>
<td>MS2</td>
<td>500 mm / 19.7"</td>
</tr>
<tr>
<td></td>
<td>MS3</td>
<td>750 mm / 29.5"</td>
</tr>
<tr>
<td>Bus riser panel</td>
<td>BR1</td>
<td>375 mm / 14.8"</td>
</tr>
<tr>
<td></td>
<td>BR2</td>
<td>500 mm / 19.7"</td>
</tr>
<tr>
<td>Busbar grounding panel</td>
<td>BG1</td>
<td>375 mm / 14.8"</td>
</tr>
</tbody>
</table>
Product Range

Equipment features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
</tr>
</tbody>
</table>

- Basic equipment
- Additional (optional) equipment
- Not available
Product Range

Cable switch panel

Cable switch panel
as feeder panel

Cable switch panel
as transfer panel

Note: For detailed design, please contact your local Siemens partner.
Fuse switch panel

as feeder panel

Type FS

Fuse switch panel

as transfer panel

Type FS

Note: For detailed design, please contact your local Siemens partner.
Note: For detailed design, please contact your local Siemens partner.
Cable connection panel

Note: For detailed design, please contact your local Siemens partner.
Product Range

Cable grounding panel, busbar grounding panel

<table>
<thead>
<tr>
<th>Cable grounding panel</th>
<th>Cable grounding panel/busbar grounding panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>(= cable connection panel with grounding switch)</td>
<td>(with grounding switch)</td>
</tr>
</tbody>
</table>

Note: For detailed design, please contact your local Siemens partner.
Note: For detailed design, please contact your local Siemens partner.
Product Range

Metering panel with cable

Note: For detailed design, please contact your local Siemens partner.
Product Range

Metering panel with cable (continued), metering switch panel

Note: For detailed design, please contact your local Siemens partner.

* Switch-disconnector as:
 – two-position switch-disconnector
 – three-position switch-disconnector
** Only in combination with VT or CPT
*** Fuses: Potential transformer fuses type CAV
Product Range

Bus riser panel, busbar grounding panel

Bus riser panel

Type BR

Busbar grounding panel

Type BG

Note: For detailed design, please contact your local Siemens partner.
Design
Panel design (examples)
Characteristics
- Switch positions:
 - CLOSED-OPEN
 - CLOSED-OPEN-GROUNDED
- Designed as a multi-chamber switch incorporating the following functions:
 - Switch-disconnector
 - Make-proof grounding switch
- Operation via gas-tight welded bushing at the front of the switchgear vessel
- Switching functions as general purpose switch-disconnector according to ANSI/IEEE C37.20.3 *

Mode of operation
The switch shaft with the moving contacts rotates inside the chamber containing the fixed contacts.
Compression vanes, which rotate in conjunction with the switch shaft, divide the arcing chamber into two subchambers each of which changes in conjunction with the rotation.
During the switching movement, the compression vanes generate a pressure difference between the subchambers. The SF₆ gas flows through a nozzle, causes a directional blow-out of the breaking arc and quenches it rapidly.
Interlocking is not necessary as the CLOSED and GROUNDED functions cannot be implemented simultaneously.

Legend
1 Moving contact
2 Fixed contact for GROUNDED
3 Fixed contact for CLOSED

* Standards see page 40
Common features
- Metal-enclosed
- Located in a gas-insulated switchgear vessel
- Switch positions:
 - CLOSED-OPEN
 - CLOSED-OPEN-GROUNDED
- No cross insulation between phases
- Two/three-position switch with air-insulated primary connections for busbar and feeder
- Operation via a gas-tight welded-in metal bellows in the front of the switchgear vessel

View port
The visual inspection of the actual position of the two/three-position switch is possible via a view port.
(Fig. shown on the right)

Two/three-position switch-disconnector 600 A
- Up to 600 A
- With gas-insulated, maintenance-free quenching principle

Operating mechanism
- Spring-operated mechanism with detachable lever
- Manual operation with the aid of a detachable lever
- Options:
 - Mechanical ready-for-service indication
 - Auxiliary switch
 - Motor operating mechanism for switch-disconnector
 - Locking device
- Spring-operated/stored-energy mechanism for transformer panel type FS

Interlocks
- Opening of panel cover or cable compartment cover only in “GROUNDED” position

Operating cycles
- Capable of 100 operating cycles at rated continuous current 600 A
- Mechanical endurance of 1000 operating cycles

Legend for view port
1 Moving contact
2 Fixed contact for CLOSED
3 Fixed contact for GROUNDED

Switching functions of the three-position switch-disconnector 600 A
- Switching and disconnecting under load
- General-purpose switching function
- Make-proof grounding function

View port
(default view mode)
Components

Busbars, HV CL (current-limiting) fuse assembly

Busbars
- Metal-enclosed busbar compartment
- Three-pole design, bolted from panel to panel
- Easy switchgear extension
- Made of copper: Round-edge copper for up to 1200 A

Option: Shrink-on sleeve

HV CL fuse assembly
- For fuse panel type FS
- For busbar voltage metering panel type MS
- HV CL fuse links acc. to ANSI/IEEE C37.41/C37.46 *
 - As short-circuit protection before transformers
 - With selectivity (depending on correct selection) to upstream and downstream connected equipment
- Requirements fulfilled as HV alternating current switch fuse combination
- Selection of HV CL fuses for transformers
- Fuse replacement possible only when feeder is grounded
- Option: Shunt release on operating mechanism of two/three-position switch-disconnector
- Option: “Tripped indication” of two/three-position switch-disconnector in transformer feeder (transformer switch) for remote electrical indication with one normally-open contact (1NO)

“HV CL fuse tripped”
Following the tripping of an HV CL fuse link, the mechanism for charging the spring must be set to the “OPEN” position
Subsequently, grounding can be implemented by means of the two/three-position switch-disconnector and e.g., the fuse can be replaced.

Replacement of HV CL fuse links
- Isolating and grounding of the transformer feeder
- Subsequent manual replacement of the HV CL fuse links

* Standards see page 40

HV HRC fuse assembly

Displays
- Fuse intact
- Fuse blown

Control board of a fuse panel

1 Busbar
2 Bushing-type insulator for busbar
3 HV CL fuse
4 Lower fuse holder
5 Grounding stud
6 Cable termination (not included in the scope of supply)
Allocation of HV CL fuses and transformers

The table opposite shows the recommended fuse links (electrical data valid for ambient temperatures of up to 40 °C/104 °F) for the fuse protection of transformers.

Recommendation

The two/three-position switch-disconnector in the transformer feeder (transformer switch) is combined with Bussmann fuse links. Dimensions according to DIN standards (especially manufactured Bussmann fuse links). Dimensions according to DIN standards (especially manufactured Siemens).

Standards

HV CL fuse links according to ANSI/IEEE C37.41/C37.46 *

Bussmann fuses

<table>
<thead>
<tr>
<th>Rated voltage</th>
<th>Length</th>
<th>Diameter</th>
<th>Rated current</th>
<th>Power loss</th>
<th>Panel type</th>
<th>Code/reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>442 / 17.4</td>
<td>51 / 2.0</td>
<td>8</td>
<td>10</td>
<td>FS1/FU1</td>
<td>55GDMS100ES</td>
</tr>
<tr>
<td>5.5</td>
<td>442 / 17.4</td>
<td>51 / 2.0</td>
<td>10</td>
<td>12</td>
<td>FS2/FU2</td>
<td>55GDMS125ES</td>
</tr>
<tr>
<td>5.5</td>
<td>442 / 17.4</td>
<td>51 / 2.0</td>
<td>15</td>
<td>13</td>
<td>FS3/FU3</td>
<td>55GDMS150ES</td>
</tr>
</tbody>
</table>

* Standards see page 40
** FS1/FU1: Single fuse
FS2/FU2: Two fuses in parallel
FS3/FU3: Three fuses in parallel

Components

Metal-Enclosed Interrupter Switchgear Type SIMOSEC, up to 27.6 kV, ANSI, Air-Insulated, Extendable · Siemens HA 41.31 · 2008
Components

Operating mechanisms for two/three-position switches

Manual operating mechanism
- **Standard**: As detachable lever mechanism
- **Spring-operated mechanism**:
 - For cable-switch panel type CS
 - For all two/three-position switches (except in panel type FS)
- **Spring-operated/stored-energy mechanism**
 For fuse panel type FS as well as for busbar voltage metering switch panel type MS

The two/three-position switch is operated via a rocker with metal bellows which is gas-tight and welded at the switchgear vessel.

Motor operating mechanism (option)
The manual operating mechanisms can be equipped with motor operating mechanisms for the two/three-position switch-disconnector.

Operating voltages for motor operating mechanisms:
- 24, 48, 60, 125 V DC
- 50/60 Hz 120 and 240 V AC

Electrical operation:
- **Standard**: Remote operation (applied to terminal)
- **Option**: Local operation by momentary-contact rotary control switch

Shunt release (option)
Spring-operated/stored-energy mechanisms can be equipped with a shunt release. Remote electrical tripping of the two/three-position switch-disconnector is possible via the magnetic coil of the shunt release, e.g., transformer overtemperature tripping.

To avoid thermal overloading of the shunt release in the event of a continuous signal that may be applied, the shunt release is switched off via an auxiliary switch which is mechanically coupled with the three-position switch-disconnector.

Auxiliary switch (option)
Each operating mechanism of the two/three-position switch-disconnector can be optionally equipped with an auxiliary switch for the switch position indication:
- Function switch-disconnector or disconnector: CLOSED and OPEN: 2NO + 2NC
- Function grounding switch at the two/three-position switch: CLOSED and OPEN: 2NO + 2NC

Technical data of the auxiliary switch

<table>
<thead>
<tr>
<th>Breaking capacity</th>
<th>Rated insulation voltage 250 V AC/DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage</td>
<td>Normal current</td>
</tr>
<tr>
<td>V</td>
<td>A</td>
</tr>
<tr>
<td>up to 240</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rated switching capacity

- Continuous current 10 A
- Making capacity 50 A

Abbreviations:
- NO = normally-open contact
- NC = normally-closed contact
Ready-for-service indicator
(option for three-position switch)

- Self-monitoring; easy to read
- Independent of temperature and pressure variations
- Independent of site altitude
- Only responds to changes in gas density
- **Option**: Alarm switch "1NO contact"

Mode of operation
For the ready-for-service indicator, a gas-tight measuring box is installed on the inside of the switchgear vessel.

A coupling magnet, which is fitted to the bottom end of the measuring box, transmits its position to an outside armature through the stainless steel switchgear vessel. This armature moves the ready-for-service indicator of the switchgear.

While changes in the gas density during the loss of gas, which are decisive for the insulating capacity, are displayed, temperature-dependent changes in the gas pressure are not. The gas in the measuring box has the same temperature as that in the switchgear.

The temperature effect is compensated via the same pressure change in both gas volumes.

Voltage detection systems
For voltage detection according to IEC 61 243-5 / VDE 0682-415

Plug-in voltage detection systems
- Standard: HR system

Features of the HR system
- Voltage indicator
- HR system (standard)
- Verification of safe isolation from supply phase by phase through insertion in each socket pair
- Voltage indicator flashes if high voltage is present
- For continuous operation
- Safe-to-touch
- Measuring system and voltage indicator can be tested
- Fixed-mounted capacitive voltage divider in bushings
- Without auxiliary power

Mounting of voltage detection systems
See "Product range" pages 10 to 18

Verification of correct terminal-phase connections
- Possible by means of a phase comparison test unit (optional)
- Safe-to-touch handling of the phase comparison test unit by inserting it into the capacitive taps (socket pairs) of the switchgear

Components

Indicating and measuring equipment

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement box</td>
<td>Voltage indicator, HR system (standard)</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Measuring box</td>
<td>Magnetic coupling</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Red indication:</td>
<td>Green indication:</td>
</tr>
<tr>
<td>not ready for service</td>
<td>ready for service</td>
</tr>
</tbody>
</table>

Principle of operation of gas monitoring with ready-for-service indicator

Stainless-steel vessel filled with SF₆ gas, gauge pressure 50 kPa (7.25 psi) at 20 °C
Components

4MC70 33 cable-type current transformers

Application
- For cable panel types CS, CC, CG
- For fuse panel types FS, FU

Features
- According to ANSI / IEEE C57.13
- Designed as a single-pole ring-core current transformer
- Only for shielded cables
- Climate-independent
- Free of dielectrically stressed cast-resin parts (due to design)
- Inductive type
- Secondary connection by means of a terminal strip inside the panel

Installation
- Arranged on the cable at the panel connection
- Transformers mounted on a supporting plate at the factory; final assembly on the cables at site

Technical data

MC70 33 cable-type current transformer

Primary data
- Max. equipment operating voltage U_{m}: 0.60 kV
- Rated current I_N: 30 A to 600 A
- Rated short-duration power-frequency withstand voltage (winding test): 3 kV
- Rated thermal short-time withstand current I_{th}: 25 kA
- Rated continuous thermal current I_D: 1.0 x I_N
 option: 1.2 x I_N
- Rated peak withstand current I_{dyn}: unlimited

Secondary data
- Rated current: 5 A
- Measuring core class *** 0.3 | 0.6 | 1.2
- Burden: 0.2 VA to 1.8 VA
- Protection core class *** C10 ... C200

Dimensions
- Overall height H: 50* | 100* | 170* | 285* mm
- Outside diameter: Ø 145 mm / 5.7 inch
- Inside diameter: Ø 55 mm / 2.2 inch
- For cable diameter: Ø 36 ... 50 mm / 1.4 ... 2.0 inch

* Depending on the core data
** Assembly normally under the panel floor
*** Accuracy class varies according to CT data

Other values available on request
Components

4MA7 block-type current transformers and 4MR voltage transformers

Application
- For metering panel types MT, MS, MC

Features
- 4MA7 current transformer
- According to ANSI/IEEE C57.13
- Dimensions according to DIN 42 600-8
- Designed as a single-pole indoor block-type current transformer
- Cast-resin insulated
- Secondary connection by means of screw-type terminals

4MR voltage transformer
- According to ANSI/IEEE C57.13
- Dimensions according to DIN 42 600-9 (small model)
- Designed as an indoor voltage transformer:
 - Type 4MR, single-pole
 - Option: Type 4MR, two-pole
- Cast-resin insulated
- Secondary connection by means of screw-type terminals

Other values available on request

Technical data

4MA7 single-pole block-type current transformer

<table>
<thead>
<tr>
<th>Primary data</th>
<th>Max. equipment operating voltage U_{im}</th>
<th>15.5 kV</th>
<th>27.6 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated short-duration power-frequency withstand voltage</td>
<td>$16 kV$</td>
<td>$20 kV$</td>
<td>$28 kV$</td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage U_p</td>
<td>95 kV</td>
<td>125 kV</td>
<td></td>
</tr>
<tr>
<td>Rated current I_1</td>
<td>50 A to 600 A</td>
<td>> 600 A, on request</td>
<td></td>
</tr>
<tr>
<td>Rated thermal short-time withstand current I_{th}</td>
<td>up to 25 kA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated continuous thermal current I_D</td>
<td>up to 1.0 I_1</td>
<td>option: 1.2 I_1</td>
<td></td>
</tr>
<tr>
<td>R. peak withst. current I_{dyn}</td>
<td>max. 2.5 I_1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4MR single-pole voltage transformer

<table>
<thead>
<tr>
<th>Primary data</th>
<th>Max. equipment operating voltage U_{im}</th>
<th>5.6 kV</th>
<th>9.52 kV</th>
<th>15.5 kV</th>
<th>25.5 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated short-duration power-frequency withstand voltage</td>
<td>$16 kV$</td>
<td>$20 kV$</td>
<td>$28 kV$</td>
<td>$34 kV$</td>
<td>$40 kV$</td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage U_p</td>
<td>60 kV</td>
<td>75 kV</td>
<td>95 kV</td>
<td>125 kV</td>
<td></td>
</tr>
<tr>
<td>Rated voltage for auxiliary winding U_{x}</td>
<td>100 V</td>
<td>110 V</td>
<td>120 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burden</td>
<td>25...200 VA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>0.3</td>
<td>0.5</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Secondary data

Rated current	5 A
Measuring core	Class 3
Burden	0.2 to 1.8 VA
Protection core	Class 3

Other values available on request

Technical data

4MR voltage transformer and 4MA7 block-type current transformer installed in metering panel.
Components

Cable connection

General features
- Cable termination points are arranged one behind the other
- Uniform cable connection height per panel (see dimension drawings)
- With cable bracket or cable clamps and grounding points for cable shields
- Access to the cable connection compartment only when feeder has been grounded

Features for cable terminals
- For thermoplastic-insulated cables
- For paper-insulated mass-impregnated cables
- For connection cross-sections (cable size) * up to 300 mm² (600 kcmil)
- Cable bottom entry from below (standard)
- Cable top entry from above (optional)

Legend
1 As delivered condition for cable termination
2 As delivered condition, prepared for cable termination
3 Cold shrink brand 3M
4 Cable termination brand 3M or Tyco Electronics Raychem
5 Cable termination brand 3M or Tyco Electronics Raychem (with cold shrink brand 3M)

* Larger connection cross-sections on request.
Components

Selection data for various cable terminations

<table>
<thead>
<tr>
<th>Panel type</th>
<th>CS1 + 2</th>
<th>FS1 + 2 + 3</th>
<th>FU1 + 2 + 3</th>
<th>CC1 + 2</th>
<th>CG1 + 2</th>
<th>MC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top cable entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main switch or vertical copper bar in upper position (fuse assembly in lower position)</td>
<td>490/19.3</td>
<td>2550/100.4</td>
<td>490/19.3</td>
<td>2550/100.4</td>
<td>490/19.3</td>
<td>2550/100.4</td>
</tr>
<tr>
<td>Main switch or vertical copper bar in lower position (fuse assembly in upper position)</td>
<td>not available</td>
<td>not available</td>
<td>not available</td>
<td>not available</td>
<td>not available</td>
<td>not available</td>
</tr>
<tr>
<td>Middle cable connection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to top</td>
<td>940/37</td>
<td>2250/88.6</td>
<td>940/37</td>
<td>2250/88.6</td>
<td>940/37</td>
<td>2250/88.6</td>
</tr>
<tr>
<td>to bottom</td>
<td>1240/48.8</td>
<td>2250/88.6</td>
<td>not available</td>
<td>not available</td>
<td>1240/48.8</td>
<td>2250/88.6</td>
</tr>
<tr>
<td>Bottom cable entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main switch or vertical copper bar in upper position (fuse assembly in upper position)</td>
<td>not available</td>
<td>not available</td>
<td>not available</td>
<td>not available</td>
<td>490/19.3</td>
<td>2250/88.6</td>
</tr>
<tr>
<td>Main switch or vertical copper bar in lower position (fuse assembly in lower position)</td>
<td>490/19.3</td>
<td>2250/88.6</td>
<td>490/19.3</td>
<td>2250/88.6</td>
<td>not available</td>
<td>not available</td>
</tr>
</tbody>
</table>

Principle of cable connection (dimensions in mm/inch)

(e.g. for panel type CS)
Dimensions

Cable switch panel types CS... (dimensions in mm/inch)

Legend
1. Available mounting depth in the LV niche
Dimensions

Fuse panel types FU... (dimensions in mm/inch)

Legend
1 Available mounting depth in the LV niche
2 Screwed-on door (fuse compartment)
3 Top case for cable top entry
Dimensions

Cable connection panel types CC... (dimensions in mm/inch)

Legend
1 Available mounting depth in the LV niche
2 Screwed-on cover
Dimensions

Cable grounding panel types CG... (dimensions in mm/inch)

Legend
1 Available mounting depth in the LV niche
2 Screwed-on cover
Dimensions

Metering panel type MT3, metering switch panel types MS (dimensions in mm/\text{inch})

Legend
1 Available mounting depth in the LV niche
2 Screwed-on cover

Type MT3

Type MS2 (with voltage transformer 4MR)

Type MS3 (with control power transformer make ITI)
Dimensions

Metering cable panel type MC3 (dimensions in mm/inch)

Legend
1 Available mounting depth in the LV niche
2 Screwed-on cover
Dimensions

Bus riser panel types BR... (dimensions in mm/inch)

Legend
1 Available mounting depth in the LV niche
2 Screwed-on cover
Dimensions

Busbar grounding panel type BG1 (dimensions in mm/inch)

Legend
1 Available mounting depth in the LV niche
2 Screwed-on cover
Dimensions

Floor openings (dimensions in mm/inch in red) and fixing points

1. Wall distance
2. Fixing frame (base) of an individual panel or panel block
3. Floor opening for high-voltage cables and, where applicable, control cables
4. Position of the cables for the feeder
5. Fixing points
6. Floor opening if required for panels without cable connection
Standards

Overview of standards
SIMOSEC ANSI switchgear complies with the following relevant standards and specifications as applicable:
- ANSI/IEEE Std. C37.20.3-2001
- ANSI/IEEE Std. C37.20.4-2001
- ANSI/IEEE Std. C37.57-2003
- ANSI/IEEE Std. 1247-2005
- CSA C22.2 No. 193-M 1983
- CSA C22.2 No. 31-04
- EEMAC G11-1
- IEC 62 271-102
- IEC 62 271-105
- IEC 60 071/VDE 0111
- IEC 60 694/ ANSI/IEEE C37.20.3.

Third-party listing
SIMOSEC ANSI is available for most configurations with UL or C-UL listing.

Type of service location
SIMOSEC ANSI switchgear can be used as an indoor installation in accordance with NEC (NFPA/70)
- Outside lockable electrical service locations at places which are not accessible to the public. Enclosures of switchgear can only be removed with tools.
- Inside lockable electrical service locations. A lockable electrical service location is a place outdoors or indoors that is reserved exclusively for housing electrical equipment and which is kept under lock and key. Access is restricted to authorized personnel and persons who have been properly instructed in electrical engineering. Untrained or unskilled persons may only enter under the supervision of authorized personnel or properly instructed persons.

Terms
- “Make-proof grounding switches” are grounding switches with short-circuit making capacity according to IEC 62 271-102
- Switch-disconnector corresponds to interrupter switch
- HV CL are high-voltage current limiting fuse links

Table – Insulating capacity

<table>
<thead>
<tr>
<th>Rated voltage (rms value)</th>
<th>8.25</th>
<th>15</th>
<th>27.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated short-duration (1 minute) power-frequency withstand voltage (rms value)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Across isolating distances</td>
<td>kV</td>
<td>39.6</td>
<td>39.6</td>
</tr>
<tr>
<td>– Between phases and to ground</td>
<td>kV</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage (peak value)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Across isolating distances</td>
<td>kV</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>– Between phases and to ground</td>
<td>kV</td>
<td>95</td>
<td>95</td>
</tr>
</tbody>
</table>

Altitude correction factor K_a

For site altitudes above 1000 m/3281 ft, the altitude correction factor K_a is recommended, depending on the actual site altitude above sea level.

- Rated short-duration power-frequency withstand voltage to be selected
- Rated lightning impulse withstand voltage to be selected

Example:
- 3000 m/9842 ft site altitude above sea level
- 15 kV switchgear rated voltage
- 95.0 kV rated lightning impulse withstand voltage
- Rated lightning impulse withstand voltage to be selected 95 kV · 1.28 = 122 kV

Result:
- According to the above table, a switchgear for a rated voltage of 27.6 kV is to be selected.

Insulating capacity
- The insulating capacity is verified by testing the switchgear with rated values of short-duration power-frequency withstand voltage and lightning impulse withstand voltage according to IEC 60 694/ VDE 0670-1000 and ANSI/IEEE C37.20.3.
- The rated values are referred to sea level and to normal atmospheric conditions 14.7 PSI, 68 °F, 0.00068 lb/ft³ humidity in accordance with IEC 60 071/NVE 0111 and ANSI/IEEE.
- The insulating capacity decreases with increasing altitude.
- For site altitudes above 1000 m/3281 ft (above sea level) the standards do not provide any guidelines for the insulation rating. Instead, special regulations apply to these altitudes.

Site altitude
- As the altitude increases, the insulating capacity of insulation in air decreases due to the decreasing air density.
- For site altitudes above 1000 m/3281 ft a higher insulation level must be selected. This results from the multiplication of the rated insulation level for 0 mm/0 ft to 1000 m/3281 ft (above sea level) with altitude correction factor K_a.

Metals-Wall Switchgear Type SIMOSEC, up to 27.6 kV, ANSI, Air-Insulated, Extendable - Siemens HA 41.31 - 2008
Cable testing
- For cable testing
 - the installation and operating instructions of the switchgear
 - the information on manufacturer-dependent cable sealing ends
 - the cable version (e.g. paper-insulated mass-impregnated cables, PVC cables or XLPE cables) must be observed.

For switch-disconnector feeders
DC voltage test before the test:
Remove or disconnect any voltage transformers at the cable connection in SIMOSEC ANSI switchgear.
SIMOSEC ANSI switchgear for rated voltages up to 27.6 kV can be subjected to cable tests at a max. DC test voltage of 70 kV. The voltage at the busbar may be 27.6 kV in this case.

Aseismic capacity (optional)
SIMOSEC ANSI switchgear can be upgraded for regions at risk from earthquake.
For upgrading, earthquake qualification testing has been carried out in accordance with the following standards as applicable:
- IEC 60 068-3-3, 1993
- IEC 60 068-2-6, 1195
- IABG TA13-TM-002/98 (guide)
- NFPA 5000 and IBC Level Seismic Simulation

Within the range of the prevailing earthquake frequencies from 1 to 35 Hz, the required response spectrum to IBC 200 % and 300 % covers the following response spectra:
- Uniform Building Code zone 4
- Seismic Requirements Spec. 9067; Department of Water & Power, Los Angeles
- GTS-1.1013 ENDES, Chile
- VDE 0670-111
- IABG TA13-TM-002/98 category 2

Climate and ambient conditions
SIMOSEC ANSI switchgear may be used, subject to possible additional measures – e.g. panel heaters or floor covers – under the following ambient conditions and operating temperatures:
- Ambient conditions
 - Natural foreign materials
 - Chemically active pollutants
 - Small animals
- Operating temperatures
 The operating temperatures are classified according to ANSI/IEEE C37.20.3
SIMOSEC ANSI switchgear is largely insensitive to climate and ambient conditions by virtue of the following features:
- No cross insulation for isolating distances between phases
- Metal enclosure of switching devices (e.g. three-position switch) in gas-filled stainless-steel switchgear vessel
- Dry-type bearings in operating mechanism
- Essential parts of the operating mechanism made of corrosion-proof materials
- Use of climate-independent cable-type current transformers
- All contacts (switch disconnector and make-proof grounding switch) are maintenance-free
- Joints of the energized copper bars are silver plated
- Under indoor operating conditions, SIMOSEC ANSI requires low maintenance

Protection against solid foreign bodies, electric shock and ingress of water
SIMOSEC ANSI switchgear fulfills acc. to the standards ANSI/IEEE C37.20.3 the following type of protection: All openings in the enclosure prevent the entrance of a rod with a diameter of 3.2 mm/0.13 inch.

Test voltages:

<table>
<thead>
<tr>
<th>Rated voltage of switchgear</th>
<th>DC test voltage, maximum value</th>
<th>VLF* test voltage cosine-rectangular waveform rms (peak) voltage</th>
<th>VLF* test voltage sinusoidal waveform rms (peak) voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 kV</td>
<td>55 kV</td>
<td>22 (22)</td>
<td>16 (22)</td>
</tr>
<tr>
<td>27.6 kV</td>
<td>72 kV</td>
<td>33 (33)</td>
<td>23 (33)</td>
</tr>
</tbody>
</table>

* VLF = Very Low Frequency.
For cosine-rectangular waveform, the rms value is taken as equal to the peak value. For sinusoidal waveform, the rms value is 0.707 times the peak value, if distortion is less than 5 %.

Switchgear color
Light grey No. 61 according to ASTM D1535 97 (Munsell notation 8.3 G6.10/0.54)
All statements, technical information and recommendations contained herein are based on information and tests we believe to be reliable. The accuracy hereof is not guaranteed. Since conditions of use are outside our control, the user should determine the suitability of the product for its intended use and assumes all risk and liability whatsoever in connection herewith.

Siemens Power Transmission & Distribution, Inc.
7000 Siemens Road
Wendell, NC 27591
Phone: 1-800-347-6659

© 2008, Siemens Power Transmission & Distribution, Inc.
All rights reserved.
Subject to change without notice.