

Programming

style guide
for SIMATIC S7-1200/ S7-1500

TIA Portal

https://support.industry.siemens.com/cs/ww/en/view/81318674

Siemens

Industry

Online

Support

https://support.industry.siemens.com/cs/ww/en/view/81318674

Legal information

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 2

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Legal information
Use of application examples

Application examples illustrate the solution of automation tasks through an interaction of several
components in the form of text, graphics and/or software modules. The application examples are
a free service by Siemens AG and/or a subsidiary of Siemens AG ("Siemens"). They are non-
binding and make no claim to completeness or functionality regarding configuration and
equipment. The application examples merely offer help with typical tasks; they do not constitute
customer-specific solutions. You yourself are responsible for the proper and safe operation of the
products in accordance with applicable regulations and must also check the function of the
respective application example and customize it for your system.
Siemens grants you the non-exclusive, non-sublicensable and non-transferable right to have the
application examples used by technically trained personnel. Any change to the application
examples is your responsibility. Sharing the application examples with third parties or copying the
application examples or excerpts thereof is permitted only in combination with your own products.
The application examples are not required to undergo the customary tests and quality inspections
of a chargeable product; they may have functional and performance defects as well as errors. It is
your responsibility to use them in such a manner that any malfunctions that may occur do not
result in property damage or injury to persons.

Disclaimer of liability
Siemens shall not assume any liability, for any legal reason whatsoever, including, without
limitation, liability for the usability, availability, completeness and freedom from defects of the
application examples as well as for related information, configuration and performance data and
any damage caused thereby. This shall not apply in cases of mandatory liability, for example
under the German Product Liability Act, or in cases of intent, gross negligence, or culpable loss of
life, bodily injury or damage to health, non-compliance with a guarantee, fraudulent
non-disclosure of a defect, or culpable breach of material contractual obligations. Claims for
damages arising from a breach of material contractual obligations shall however be limited to the
foreseeable damage typical of the type of agreement, unless liability arises from intent or gross
negligence or is based on loss of life, bodily injury or damage to health. The foregoing provisions
do not imply any change in the burden of proof to your detriment. You shall indemnify Siemens
against existing or future claims of third parties in this connection except where Siemens is
mandatorily liable.
By using the application examples you acknowledge that Siemens cannot be held liable for any
damage beyond the liability provisions described.

Other information
Siemens reserves the right to make changes to the application examples at any time without
notice. In case of discrepancies between the suggestions in the application examples and other
Siemens publications such as catalogs, the content of the other documentation shall have
precedence.
The Siemens terms of use (https://support.industry.siemens.com) shall also apply.

Security information
Siemens provides products and solutions with industrial security functions that support the secure
operation of plants, systems, machines and networks.
In order to protect plants, systems, machines and networks against cyber threats, it is necessary
to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept.
Siemens’ products and solutions constitute one element of such a concept.
Customers are responsible for preventing unauthorized access to their plants, systems, machines
and networks. Such systems, machines and components should only be connected to an
enterprise network or the Internet if and to the extent such a connection is necessary and only
when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.
For additional information on industrial security measures that may be implemented, please visit
https://www.siemens.com/industrialsecurity.
Siemens’ products and solutions undergo continuous development to make them more secure.
Siemens strongly recommends that product updates are applied as soon as they are available
and that the latest product versions are used. Use of product versions that are no longer
supported, and failure to apply the latest updates may increase customer’s exposure to cyber
threats.
To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed
at: https://www.siemens.com/industrialsecurity.

https://support.industry.siemens.com/
https://www.siemens.com/industrialsecurity
https://www.siemens.com/industrialsecurity

Table of content

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 3

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Table of content

Legal information ... 2

1 Introduction .. 6

1.1 Goal .. 6
1.2 Advantages of a uniform programming ... 7
1.3 Applicability ... 7
1.4 Scope .. 7
1.5 Rule violations and other regulations.. 7

2 Definitions... 8

2.1 Rules/ Recommendations .. 8
2.2 Enumerating rules.. 8
2.3 Performance .. 8
2.4 Identifier/ Naming .. 9
2.5 Abbreviations ... 9
2.6 Terms used with variables and parameters 10

3 Settings in TIA Portal ... 12

ES001 Rule: User Interface Language "English" 12
ES002 Rule: Mnemonic "International" ... 12
ES003 Recommendation: Non-proportional font in editors 12
ES004 Rule: Smart Indentation with two whitespaces 13
ES005 Rule: Symbolic representation of operands 13
ES006 Rule: IEC conformant programming 14
ES007 Rule: Explicit data access via HMI/ OPC UA/ Web API 14
ES008 Rule: Automatic value evaluation (ENO) enabled.................. 14
ES009 Rule: Automatic evaluation of Array boundaries 14

4 Globalization ... 15

GL001 Rule: Use consistent language ... 15
GL002 Rule: Set editing and reference language to "English (US)" .. 15
GL003 Rule: Supply texts in all project languages 16

5 Nomenclature and Formatting ... 17

NF001 Rule: Unique and consistent English identifiers 17
NF002 Rule: Use meaningful comments and properties 18
NF003 Rule: Document developer information 19
NF004 Rule: Comply with prefixes and structure for libraries 20
NF005 Rule: Use PascalCasing for objects 21
NF006 Rule: Use camelCasing for code elements 22
NF007 Rule: Use prefixes .. 23
NF008 Rule: Write identifier of constants in CAPITALS 24
NF009 Rule: Limit the character set for identifiers 25
NF010 Recommendation: Limit the length of identifiers 25
NF011 Recommendation: Use one abbreviation per identifier only ... 25
NF012 Rule: Initialize in the appropriate format 26
NF013 Recommendation: Hide optional formal parameters 26
NF014 Rule: Format SCL code meaningfully.................................... 27

6 Reusability .. 30

RU001 Rule: Provide blocks which can be simulated 30
RU002 Rule: Version entirely with libraries 30
RU003 Rule: Keep only released types in released projects 31
RU004 Rule: Use only local variables .. 32

Table of content

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 4

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

RU005 Rule: Use local symbolic constants 32
RU006 Rule: Program fully symbolic .. 33
RU007 Recommendation: Program independently from hardware.... 34
RU008 Recommendation: Use templates... 34

7 Referencing objects (Allocation) ... 35

AL001 Rule: Use multi-instances instead of single instances 35
AL002 Recommendation: Define array boundary from 0 to a constant

value ... 35
AL003 Recommendation: Declare array parameter as ARRAY[*] 35
AL004 Recommendation: Specify the required string length 36

8 Security ... 37

SE001 Rule: Validate actual values ... 37
SE002 Rule: Initialize temporary variables 37
SE003 Rule: Handle ENO .. 37
SE004 Rule: Enable data access via HMI/ OPC UA/ Web API

selectively ... 37
SE005 Rule: Evaluate error codes ... 38
SE006 Rule: Write Error OB with evaluation logic 38

9 Design guidelines/ architecture ... 39

DA001 Rule: Structure and group a project/ library 39
DA002 Recommendation: Use appropriate programming language.. 39
DA003 Rule: Set/ evaluate block properties 40
DA004 Rule: Use PLC data types .. 41
DA005 Rule: Exchange data only via formal parameters 42
DA006 Rule: Access static variables from within the block only 42
DA007 Recommendation: Group formal parameters 42
DA008 Rule: Write output parameters only once 42
DA009 Rule: Keep used code only... 43
DA010 Rule: Develop asynchronous blocks according to PLCopen.. 43
DA011 Rule: Continuous asynchronous execution with "enable" 43
DA012 Rule: Single asynchronous execution with "execute" 46
DA013 Rule: Report status/ errors via "status"/ "error"...................... 49
DA014 Rule: Use standardized value ranges for "status" 49
DA015 Recommendation: Pass underlying information 50
DA016 Recommendation: Use CASE instruction instead of ELSIF

branches ... 51
DA017 Rule: Create ELSE branch in CASE instructions................... 51
DA018 Recommendation: Avoid Jump and Label............................. 51

10 Performance ... 52

PE001 Recommendation: Deactivate "Create extended status info" . 52
PE002 Recommendation: Avoid "Set in IDB" 52
PE003 Recommendation: Pass structured parameters as reference 52
PE004 Recommendation: Avoid formal parameter with Variant 53
PE005 Recommendation: Avoid formal parameter "mode" 53
PE006 Recommendation: Prefer temporary variables 53
PE007 Recommendation: Declare important test variables as static . 53
PE008 Recommendation: Declare control/ index variables as "DInt" 54
PE009 Recommendation: Avoid multiple access using the same index

 ... 54
PE010 Recommendation: Use slice access instead of masking 54
PE011 Recommendation: Simplify IF/ ELSE instructions 55
PE012 Recommendation: Sort IF/ ELSIF branches according to

expectation ... 55
PE013 Recommendation: Avoid memory intense instructions 55

Table of content

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 5

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

PE014 Recommendation: Avoid runtime intense instructions 56
PE015 Recommendation: Use of SCL/ LAD/ FBD for time critical

applications... 56
PE016 Recommendation: Check the setting for minimum cycle time 56

11 Cheat sheet ... 57

12 Annex .. 58

12.1 Service and Support .. 58
12.2 Links and Literature ... 59
12.3 History ... 59

1 Introduction

1.1 Goal

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 6

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

1 Introduction
Programming a SIMATIC Controller a programmer has the task to develop the
application program as readable and structured as possible. Each developer
applies their own strategy to realizing this task, e.g. naming of variables, blocks or
the way the programs is commented. Different developers use different
philosophies, therefore very different application programs exist, which often can
only be interpreted by the respective creator.

Note The basis for this document is the programming guide for SIMATIC S7-1200/
S7-1500, which describes the system properties of the controllers S7-1200 and
S7-1500 how they are programmed in an optimal way:

https://support.industry.siemens.com/cs/ww/en/view/81318674

1.1 Goal

The rules and recommendations described in the following chapters [are supposed
to/ shall] help you create a uniform program code which is maintainable and
reusable. In case of multiple developers working on the same application program;
it is recommended to apply a project wide terminology as well as an agreed upon
programming style. This way you can detect and avoid errors at an early stage.

For the sake of maintainability and readability it is required, to follow a certain
format. Optical effects have only a limited impact on the quality of software. It is
more important to define rules, which support the developer as follows:

• Avoiding typos and inadvertent mistakes, which the compiler then misinterprets
Objective: The compiler shall recognize as many errors as possible.

• Supporting the developer diagnosing programming errors, e.g. reuse of
temporary variables beyond one cycle.
Objective: The Identifier indicates problems early.

• Standardization of applications and libraries
Objective: The training shall be made easy and the reusability of the program
code shall be increased.

• Easy maintenance and simplification of further developments
Objective: Changes made in individual modules of the program code, should
have minimal effects whole program. Changes may be performed by different
programmers.

Note The described rules and recommendations in this document are consistent and
do not interfere with each other.

https://support.industry.siemens.com/cs/ww/en/view/81318674

1 Introduction

1.2 Advantages of a uniform programming

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 7

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

1.2 Advantages of a uniform programming

• Uniform and consistent style

• Easy to read and understand

• Easy maintenance and increased reusability

• Easy and fast error recognition and correction

• Efficient cooperation of multiple programmers

1.3 Applicability

This document is applicable for projects and libraries in the TIA Portal, which are
programmed in the programming languages according to EC 61131-3
(DIN EN 61131-3), which are Structured Text (SCL/ ST), Ladder Logic (LAD/ KOP)
and Function Block Diagram (FBD/ FUP).

This document is also applicable for Software Units, folders, groups, Organization
Blocks (OBs), Functions (FCs), Function Blocks (FBs), technological Objects
(TOs), Data Blocks (DB), PLC data types (UDTs), variables, constants, PLC
message text lists, Watch tables and Force tables as well as for external sources.

1.4 Scope

This document doesn’t contain descriptions of:

• STEP 7-programming with TIA Portal

• Commissioning of SIMATIC-controllers

Sufficient knowledge and experience in the mentioned topics above are the
prerequisite to correctly interpreting and applying the given rules and
recommendations.

This document serves as a reference and does not replace proper knowledge in
the field of software development.

1.5 Rule violations and other regulations

In customer projects the applicable regulations, customer or branch specific
standards as well as technological regulations (e.g. Safety, Motion, …) are to be
followed and take precedence over the style guide or parts thereof.

When combining both, customer regulations with regulations within this style guide,
special care must be taken to maintain integrity and consistency of the rules.

A violation of any of the regulations must be justified and documented
appropriately in the user program.

The customer provided rules and regulations must be documented appropriately.

2 Definitions

2.1 Rules/ Recommendations

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 8

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

2 Definitions

2.1 Rules/ Recommendations

The regulations in this document are either recommendations or rules:

• Rules are binding definitions and must be followed. They are essential for a
reusable and performant programming. In exceptional cases rules may be
violated. This must be justified and documented.

• Recommendations are regulations, which support the uniformity of the
program code and serve as support and documentation. Recommendations
should be followed in general. However, there are exceptions when such a
recommendation may not be followed. Reasons for this may be a better
efficiency or better readability.

2.2 Enumerating rules

For a unique rule identification, within categories rules and recommendations are
identified with a prefix (2 characters) and are enumerated (3 digits).

In case a regulation is canceled its number will not be reassigned. In case more
regulations become necessary, you may use the numbers between 901 and 999.

Table 2-1

Prefix Category

ES Engineering System: programming environment

GL Globalization:

NF Nomenclature and formatting:

RU Reusability:

AL Allocation: Referencing of objects

SE Security:

DA Design and architecture:

PE Performance:

2.3 Performance

The performance of an automation system is defined by the execution time of the
program.

When mentioning a performance penalty, this means that it would be possible to
reduce the execution time and therefore increase the user programs cycle time, by
applying programming rules and an efficient way of programming.

2 Definitions

2.4 Identifier/ Naming

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 9

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

2.4 Identifier/ Naming

It is important to differentiate an identifier and a name. The name is part of the
identifier, which describes the meaning of an identifier.

The identifier is assembled out of:

• prefix

• name

• suffix

2.5 Abbreviations

The following abbreviations are being used throughout this document:

Table 2-2

Abbreviation Type

OB Organization block

FB Function block

FC Function

DB Data block

TO Technology object

UDT PLC data type

2 Definitions

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 10

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

2.6 Terms used with variables and parameters

There are many terms when it comes to variables, functions and function blocks.
These terms are being used differently and even wrongly. The following figure shall
explain the terms. This is necessary to make sure that a uniform understanding
about the terms within this document is achieved.

Figure 2-1

FC/ FBGlobal-DB

1 2

3

4

Table 2-3

 Term Description

1. variable Variables are being declared by an identifier and allocate
memory at a specific address within the controller. Variables
are always defined with a specific data type (Boolean,
Integer, etc.):

• PLC variables or user constants

• Variables or constants in blocks

• Variables of Structures ("STRUCT") and PLC data types

• Data blocks/ Instance data blocks

• Technology objects

2. current values

actual values

Current values are the values, which are stored within a
variable (e.g. 15 as value of an Integer variable)

3. actual parameter Actual parameter are the variables, which are connected to
the formal parameters of a block.

4. formal parameter Formal parameters are the variables which are declared in
the interface of a block. They are used for calls within a
program.

Formal parameters are often referred to as "interface
parameters" or "transfer parameters". However these terms
should be avoided.

2 Definitions

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 11

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

The block interface consists of two parts, the formal parameters and the local data.

Formal parameter

Table 2-4

Type Section Function

Input parameter Input Parameter, which the block reads values from.

Output parameter Output Parameter, which the blocks writes values to.

Input/ Output
parameter

InOut Parameter, which the block reads values from,
processes the values and writes the processed
values back into the same parameter.

Return value Return Value, which the block returns to its caller.

Local data

Table 2-5

Type Section Function

Temporary variables Temp Variables to store intermediate values.

Static variables Static Variables to store persistent/ static intermediate
values into the instance data block.

Constants Constant Constant values with a symbolic identifier to be
used within a single block.

3 Settings in TIA Portal

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 12

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

3 Settings in TIA Portal
In this chapter rules and recommendations for the initial setup of the programming
environment are described.

Note The rules and recommendations for the settings in TIA Portal listed here are
stored in the TIA Portal Settings File (tps file). You can find the tps file as a
separate download in this entry. To apply the settings, you can import the tps file
into TIA Portal.

ES001 Rule: User Interface Language "English"

The User Interface Language is to be set to "English". In this way all newly created
projects have the editing and reference language as well as all the system
constants are set to English.

Justification: To have all system constants available in the same language the
user interface language must be set to a common uniform language.

ES002 Rule: Mnemonic "International"

The mnemonic (language setting for the programming language) shall be set to
"International".

Justification: All the system languages and system parameter are set system
independent. This enables a seamless cooperation between the programmers in
the team.

Figure 3-1

ES003 Recommendation: Non-proportional font in editors

For the editors it is recommended to use a non-proportional font (monospace font).
All characters have the same width and the presentation of codes, words and
indentation is uniform.

The recommended setting is "Consolas" with a font size of 10 pt.

Justification: In contrast to "Courier New" with "Consolas" the focus is set to the
differentiation between similar characters. It was specifically designed for the
programming environments.

Figure 3-2

3 Settings in TIA Portal

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 13

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Figure 3-3

Figure 3-4

ES004 Rule: Smart Indentation with two whitespaces

For the indentation of instructions two whitespaces are used. The option "Indent" is
to set to "Smart". Tabulators are no permitted in text-based editors, as their width is
interpreted and displayed differently.

Justification: With this setting a uniform presentation is provided, even with
different editors.

Figure 3-5

ES005 Rule: Symbolic representation of operands

The representation of operands is set to "Symbolic"

Justification: The programming is fully symbolic.

Figure 3-6

3 Settings in TIA Portal

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 14

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

ES006 Rule: IEC conformant programming

To comply with IEC programming, the IEC check is turned on by default for every
new block.

Justification: With this setting turned on every new block has the IEC check
turned on. This in turn ensures a type safe usage of variables.

Figure 3-7

ES007 Rule: Explicit data access via HMI/ OPC UA/ Web API

Disabling accessibility and writability from HMI/ OPC UA/ Web API for interfaces
limits the access to internal data for external applications.

Justification: External applications should only be able to access internal data,
when explicitly enabled.

Figure 3-8

Figure 3-9

ES008 Rule: Automatic value evaluation (ENO) enabled

For the automatic evaluation of type defined value boundaries and their operations
the EN/ ENO mechanism is responsible. This mechanism is turned on by default

Justification: With this setting to be active the evaluations are being executed by
the system, refer also to "SE003 Rule: Handle ENO".

ES009 Rule: Automatic evaluation of Array boundaries

The automatic evaluation of Array boundaries must be turned on.

Justification: Staying within the boundaries of an Array is already evaluated at
compile time. An out of bounds access can be avoided this way.

4 Globalization

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 15

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

4 Globalization
This chapter describes the rules and recommendations for a global cooperation.

GL001 Rule: Use consistent language

The language used must be consistent in the PLC as well as in the HMI
programming. This means, that English texts can only be found in the English
language setting.

GL002 Rule: Set editing and reference language to "English (US)"

If not otherwise demanded by the customer, the language must be set to "English
(United States)" for both the Editing and Reference language. The complete
program including all comments must be created in English.

Figure 4-1

4 Globalization

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 16

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

GL003 Rule: Supply texts in all project languages

All project texts must be provided at least in English as well as in all other used
project languages.

Note In a block editor the texts and their translations can be easily managed in the tab
"Texts".

Figure 4-2

5 Nomenclature and Formatting

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 17

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

5 Nomenclature and Formatting
This chapter describes rules and recommendations for naming and writing of
programs and comments.

NF001 Rule: Unique and consistent English identifiers

The name of an identifier (Blocks, variable, etc.) must be in English language
(English – United States). The name describes the meaning of the identifier in the
context of the source code and therefore promotes an understanding of the
functionality and usage of the identifier.

• The chosen spelling of an identifier must be maintained in all blocks and PLC
data types and shall be as short as possible.

• The same functional meaning of an identifier causes the same naming for the
identifier. This applies to capitalization as well.

• Identifier names can be assembled out of multiple words; the order of the
words has to be the same as in the spoken language.

• Functions and Function block identifiers shall start with a verb, e.g. "Get",
"Set", "Put", "Find", "Search", "Calc".

• Is the identifier a name for an Array, then the name uses the plural. Non-
countable nouns remain in their singular form ("data", "information", "content",
"management").

• Static and temporary Boolean variables are often state indicating variables. In
such cases names starting with "is", "can" or "has" can be understood the
easiest.

Justification: A quick overview about the program and its inputs and outputs will
be provided.

Note The names assigned by TIA Portal are place holders and need to be replaced by
yours.

Table 5-1

 Correct naming Incorrect naming

for Arrays data

beltConveyors

datas

beltConveyor

For static and temporary
Boolean variables, which
indicate a state

isConnected

canScan

connected

scan

For other Boolean variables enable setEnable

For Functions/
Function blocks

GetMachineState

SearchDevices

MachineStateFC

FB_Device

5 Nomenclature and Formatting

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 18

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

NF002 Rule: Use meaningful comments and properties

Comment and property fields shall be used and filled with meaningful comments
and information. This includes

• Block title and block comments (refer also to "NF003 Rule: Document
developer information")

• Block interfaces

• Network title and network comments

• Blocks and their variables and constants

• PLC data types and their variables

• PLC tag tables, PLC tags and user constants

• PLC alarm text lists

• PLC supervision & alarms

• Library properties

Justification: Using this the user gets the most information and guidance in using
the components, e.g. through tooltips.

Figure 5-1

Note Additionally, the block description and documentation can be provided to TIA
Portal as document (e.g. *.pdf, *.html) The user can open this documentation by
pressing <Shift> <F1> as part of the Online help.

Further information is contained in the Online help using the keyword "providing
user-defined documentation":

https://support.industry.siemens.com/cs/ww/en/view/109773506/119453612171

https://support.industry.siemens.com/cs/ww/en/view/109773506/119453612171

5 Nomenclature and Formatting

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 19

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

NF003 Rule: Document developer information

Each block contains a block header in the program code (SCL/ ST) or in the block
comment (LAD, FBD). Herein the most important information for the block
development must be documented. Due to the placement inside the program, the
development relevant information will be hidden in knowhow protected blocks.

User relevant information must be provided in the block properties. This information
is available to the user even in knowhow protected blocks.

The following template for such a block header contains the elements from the
block properties as well as the development relevant information, which don’t need
to be copied into the properties.

The description contains the following items:

• (Optional) Company name / (C) Copyright (Year). All rights reserved.

• Title/ Block description

• Description of the functionality

• (Optional) Name of the library

• Department/ Author/ Contact

• Target system – PLCs with firmware version (z. B. 1516-3 PN/DP V2.6)

• Engineering – TIA Portal with version at time of creation/ modification

• Limitations for usage (e.g. certain OB types)

• Requirements (e.g. additional hardware)

• (Optional) additional information

• (Optional) change log with version, date, author and change description (with
Safety blocks incl. Safety signature)

Template for a block header in LAD/ KOP and FBD/ FUP:

(company) / (C) Copyright (year)

Title: (Title of this block)

Comment/Function: (that is implemented in the block)

Library/Family: (that the source is dedicated to)

Author: (department / person in charge / contact)

Target System: (test system with FW version)

Engineering: TIA Portal (SW version)

Restrictions: (OB types, etc.)

Requirements: (hardware, technological package, etc.)

Change log table:

Version | Date | Signature | Expert in charge | Changes applied

------------|------------|------------|------------------|-----------------------

001.000.000 | yyyy-mm-dd | 0x47F78CC1 | (name of expert) | First released version

5 Nomenclature and Formatting

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 20

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Template for a block header in SCL:

REGION Description header

 //==

 // (company) / (C) Copyright (year)

 //--

 // Title: (Title of this block)

 // Comment/Function: (that is implemented in the block)

 // Library/Family: (that the source is dedicated to)

 // Author: (department / person in charge / contact)

 // Target System: (test system with FW version)

 // Engineering: TIA Portal (SW version)

 // Restrictions: (OB types, etc.)

 // Requirements: (hardware, technological package, etc.)

 //--

 // Change log table:

 // Version | Date | Expert in charge | Changes applied

 //-------------|------------|------------------|------------------------------------

 // 001.000.000 | yyyy-mm-dd | (name of expert) | First released version

 //==

END_REGION

NF004 Rule: Comply with prefixes and structure for libraries

The identifier of a library has the prefix "L" and does not exceed a maximum
length of eight characters

The identifier of a library starts with the prefix "L" and is followed by a maximum of
seven characters as the name (e.g. LGF, LCom). "L" stand for the word Library.
After the library identifier an underscore (_) is used as a separator (e.g. LGF_).

The maximum length of an identifier for libraries (incl. prefix) is limited to eight
characters.

Justification: This limitation serves the purpose of assigning compact and short
names.

Every element in the library carries the prefix.

All types and master copies contained in the library get the identifier of the library.

An element, which only demonstrates the use of the library, is not a library element
in the sense of a standardized library, it is rather an example and therefore doesn’t
necessarily carry the library prefix.

Justification: With the prefix included in the identifier, naming collisions are being
avoided.

Table 5-2

Type Identifier according to style guide

Library, main folder of the library LExample

PLC data type LExample_type<Name>

Function block LExample_<Name>

Function LExample_<Name>

global data block LExample_<Name>

Organization block LExample_<Name>

PLC symbol table LExample_<Name>

Global constant LEXAMPLE_<NAME>

5 Nomenclature and Formatting

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 21

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Type Identifier according to style guide

Global constant for errors LEXAMPLE_ERROR_<NAME>

LEXAMPLE_ERR_<NAME>

Global constant for warnings LEXAMPLE_WARNING_<NAME>

LEXAMPLE_WARN_<NAME>

PLC alarm message text list LExample_<Name>

Grouping within the library

All master copies and types shall be placed in a subfolder inside the library, which
carries the library identifier as its folder name.

Justification: The subfolder supports the project harmonization efforts and allows
grouping of multiple libraries within a project.

Figure 5-2

Note This rule contains only information for the nomenclature of library elements.
Additionally, it is recommend to follow the recommendations given and explained
in detail in the library guideline available:

https://support.industry.siemens.com/cs/ww/en/view/109747503

NF005 Rule: Use PascalCasing for objects

Identifiers for TIA Portal objects, such as:

• Blocks

• Software Units, technology objects, libraries, projects

• PLC tag tables

• PLC alarm text lists

• Watch and force tables

• Traces and measurements

are written using PascalCasing.

https://support.industry.siemens.com/cs/ww/en/view/109747503

5 Nomenclature and Formatting

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 22

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

The following rules apply for PascalCasing:

• The first character is a capital letter

• If an identifier is assembled out of multiple words, then the first character of
each word is a capital letter.

• There are no separators (e.g. hyphen or underscore) used for the optical
separation of the identifier. For structuring and specialization purposes the
sparingly use of the underscore (not more than three) is permitted.

Table 5-3

Sparingly Excessive

GetAxisData_PosAxis

GetAxisData_SpeedAxis

GetAxisData_SyncAxis

Get_Axis_Data_Pos_Axis

NF006 Rule: Use camelCasing for code elements

Identifiers for code elements, such as

• Variables

• PLC data types

• Structures ("STRUCT")

• PLC tags

• Parameters

are written using camelCasing.

The following rules apply for the camelCasing:

• The first character is a non-capitalized (small) letter

• If an identifier is assembled out of multiple words, then the first character of the
following word is capitalized.

• The use of separators (e.g. hyphen or underscores) for the optical separation
is not permitted.

Figure 5-3

5 Nomenclature and Formatting

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 23

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

NF007 Rule: Use prefixes

No prefix for formal parameters

Formal parameters of blocks are used without prefixes. When passing PLC data
types, the identifiers also do not carry a prefix.

Temporary and static variables carry a prefix "temp" or "stat"

To distinguish temporary variables from formal parameters in the code, the prefixes
defined in Table 5-4 shall be used.

Justification: this measure makes it easier for the programmer to distinguish
between formal parameters and local data. With this prefixing in place the access
to a variable can be easily defined and recognized.

Note The static variables inside the global DBs and Array DBs do not have the prefix
"stat".

Instance data with prefix "inst" or "Inst"

Single instances as well as multi-instances and parameter instances get a prefix.
Single instances get the prefix "Inst", whereas multi-instances and parameter
instances get the prefix "inst".

Justification: With the prefixes in place it can be easier recognized, whether an
(invalid) access to instance data has been made.

PLC data type with prefix "type"

A PLC data type gets the prefix "type". The individual elements inside the PLC data
type do not get a prefix.

5 Nomenclature and Formatting

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 24

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Table 5-4

Prefix Type

No prefix Input and Output parameter

Access possible from the outside

➔ enable

➔ error

No prefix InOut parameter

Modifications of the assigned data possible by the user as well as by the
block at any time.

➔ conveyorAxis

No prefix PLC tags and user constants

➔ lightBarrierLeft (identifier for a PLC variable)

➔ MAX_BELTS (identifier for a user constant)

No prefix Global data blocks

Neither global DBs nor the contained elements get a prefix

➔ ReleaseSignals (identifier of a global DB)

➔ powerBusReady (identifier of a variable in a global DB)

temp Temporary Variables

No access to local data from the outside possible

➔ tempIndex

stat Static variables

No access to local data from the outside permitted

➔ statState

inst Variables of multi-instances and parameter instances

➔ instWatchdogTimer

➔ instWatchdogTimers (with Arrays of instances)

Inst Single instance data blocks

➔ InstConveyorFeed

type PLC data type

Only the data type gets the prefix, the elements do not get a prefix

➔ typeDiagnostic (identifier for PLC data type)

➔ stateNumber (identifier for a variable inside the PLC data type)

NF008 Rule: Write identifier of constants in CAPITALS

The names of constants (global and local constants) are written completely with
capital letters (UPPER_CASING). For separation and recognition purposes of
individual words or abbreviations an underscore between the words or
abbreviations shall be used.

Figure 5-4: constants in a FB

Note "TRUE" and "FALSE" are also constants.

5 Nomenclature and Formatting

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 25

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

NF009 Rule: Limit the character set for identifiers

For all object and code identifiers the Latin alphabet (a-z, A-Z) and the Arabic
numerals (0-9) as well as the underscore (_) are to be used exclusively.

Table 5-5

Correct naming Incorrect naming

tempMaxLength temporary Variable 1

NF010 Recommendation: Limit the length of identifiers

The overall length of an identifier incl. prefix, suffix or library identifier shall not
exceed 24 characters.

Justification: Since variable names in structures are assembled out of many
identifiers, the length of the identifier at the code location will become excessively
long anyway.

Example:

instFeedConveyor024.releaseTransportSect1.gappingTimeLeft

NF011 Recommendation: Use one abbreviation per identifier only

Multiple abbreviations shall not be used directly one after the other to realize the
best possible readability. To reduce the amount of used characters in an identifier
recommended abbreviations are listed in Table 5-6.

This table only contains the most commonly used abbreviations. The spelling of the
abbreviations must follow the rules for the particular use and needs to be adopted
accordingly (capitalization).

Table 5-6

Abbrev. Type

Min Minimum

Max Maximum

Act Actual, Current

Next Next value

Prev Previous value

Avg Average

Sum Total sum

Diff Difference

Cnt Count

Len Length

Pos Position

Ris Rising edge

Fal Falling edge

Old Old value (e. g. for edge detection)

Sim Simulated

Dir Direction

Err Error

Warn Warning

Cmd Command

Addr Address

5 Nomenclature and Formatting

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 26

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

NF012 Rule: Initialize in the appropriate format

The initialization (assignment of constant data) of variables shall be done in the
appropriate format of the data type. This means that a WORD typed variable shall
be initialized with 16#0001 instead of 16#01.

Initialization done in code shall use local symbolic constants, refer also to "RU005
Rule: Use local symbolic constants".

Table 5-7

Correct initialization Incorrect initialization

NF013 Recommendation: Hide optional formal parameters

Hide formal parameters, which are optional.

Justification: This way the block call can be reduced to the necessary minimum
by collapse the optional formal parameters.

Figure 5-5

5 Nomenclature and Formatting

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 27

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

NF014 Rule: Format SCL code meaningfully

It is recommended to use the Auto Format function of TIA Portal. The advantage of
this is, that all users work with the same formatting. Indentation is done
automatically.

Figure 5-6

Use of line comment "//" only

There are two different types of comments:

• Block comments "(*…*)" or multilanguage block comments "(/*…*/)" can span
over multiple lines. It describes a function or a code fragment.

• A line comment "//" describes a single line of code and is located at the end of
the code line or in front of it.

To allow for easy disabling of code fragments for debugging purposes only line
comments "//" are permitted.

A comment provides information to the reader, why something has been done at
this point in the code. The comment must not contain the code in redundant clear
text – this means, it should not describe what is done – this is being described
already by the code itself – instead the reason why something has been done
should be described.

Note You may use the button "comment". This way you don’t have to type in the
comment signs manually.

The engineering system supports this via menus, to comment selected blocks of
texts or the remove the comment signs. Additionally, you can avoid syntax
problems with nested comment blocks due to using "(*...*)" or "(/*...*/)".

Figure 5-7

Whitespaces in front of and behind operators

In front of and behind an operator a whitespace has to be used.

5 Nomenclature and Formatting

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 28

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Expressions are always placed into parenthesis

To support the order of interpretation expressions are put into parenthesis in the
desired interpretation order.

Example:

#tempSetFlag := (#tempPositionAct < #MIN_POS)

 OR (#tempPositionAct > #MAX_POS);

Condition and instructions are separated with a line break

A clear separation must be created between condition and instruction. This means,
that after a condition (e.g. THEN) or after an alternative branch (e.g. ELSE) a line
break must be used before an instruction is programmed. This rule applies in a
similar way to the conditions of the other constructs (e.g. CASE, FOR, WHILE,
REPEAT).

Example:

IF #isConnected THEN // Comment

 ; // Statement section IF

ELSE

 ; // Statement section ELSE

END_IF;

Line breaks in partial conditions

In more complex conditions it is helpful to put each partial condition into its own
line. Operators are being put in front of the new partial condition.

Example:

#tempResult := (#enable AND #tempEnableOld)

 OR (#enable AND #isValid

 AND NOT (#hasError OR #hasWarning)

);

5 Nomenclature and Formatting

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 29

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Proper indentation of conditions and instructions

Each instruction in the body of a control structure must be indented. If a single line
is not enough, Boolean expressions will be continued on the next line.

Multiline conditions in IF statements are indented by two whitespaces. The THEN
follows on a new line at the same indentation level as the IF. When the IF condition
fits onto a single line, the THEN can be put at the end of the same line. In case the
nesting depth is deeper, the THEN instruction will be put on its own line. A single
closing bracket indicates the end of a nested condition. Operands are always at the
beginning of the line.

These rules apply in a similar way for the conditions of the other control structures
(e.g. CASE, FOR, WHILE, REPEAT).

Examples:

IF #enable // Comment

 AND (

 (#turnLeft XOR #turnRight)

 OR (#statIsMaintenance AND #statIsManualMode)

) // Comment

 AND #tempIsConnected

THEN

 ; // Statement

ELSE

 ; // Statement

END_IF;

IF #enable THEN

 ; // Statement

 IF #tempIsReleased THEN

 ; // Statement

 END_IF;

ELSE

 ; // Statement

END_IF;

6 Reusability

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 30

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

6 Reusability
This chapter describes the rules and recommendations applicable to ensure the
multiple use of program elements.

RU001 Rule: Provide blocks which can be simulated

Activate the simulation capabilities via the project properties.

Justification: With this the blocks can be used completely in a simulated
environment.

Note Please be aware that the knowhow protection in a simulated environment could
be weakened.

Figure 6-1

RU002 Rule: Version entirely with libraries

Assign versions entirely. This means, that every change in a block must be
documented and the assigned version must be maintained. Every change in the
assigned version must be documented in their respective locations, such as the
block header of a LAD block.

When using a library and block types the block version is managed by TIA Portal.
In this case it is not necessary to manually maintain the version in the block
properties. The change log remains untouched by this fact.

An upgrade of the library to the latest TIA Portal version does not require a change
in the block and is therefore not a new version.

Note Before a block can be inserted into a library, all necessary settings, such as auto
numbering, knowhow protection, simulation capabilities (via project properties)
need to be done. Once the block is part of the library, the mentioned settings
above are difficult to change afterwards.

The property "published" in the context of software units may be adjusted later
without modifying the type.

6 Reusability

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 31

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Version numbers and their use

The first released version always starts with 1.0.0 (refer to Table 6-1).

The first digit describes the left most number.

The third digit in software versioning indicates changes, which have no effect on
function or documentation, such as pure bug fixing.

Extension to the functionality the second digit will be incremented, and the third
digit reset.

With a new major release, containing new functionality and incompatible changes
to the previous version, increase the first digit and resets the second and third digit.

Each digit has a valid range between 0 and 999.

Table 6-1

Library FB1 FB2 FC1 FC2 Comment

1.0.0 1.0.0 1.0.0 1.0.0 Released version

1.0.1 1.0.1 1.0.0 1.0.0 Bug fix in FB1

1.0.2 1.0.1 1.0.1 1.0.0 Optimization of FB2

1.1.0 1.1.0 1.0.1 1.0.0 Extension to FB1

1.2.0 1.2.0 1.0.1 1.0.0 Extension to FB1

2.0.0 2.0.0 1.0.1 2.0.0 New and possibly incompatible
function in FB1 and FC1

2.0.1 2.0.0 1.0.2 2.0.0 Bug fix in FB2

2.1.0 / 3.0.0 2.0.0 1.0.2 2.0.0 1.0.0 New function in FC2/ possibly larger
new release

Use of type concept for FC, FB and PLC data types

Reusable functions, function blocks and PLC data types, which cannot be changed
by the user are provided as types in a library.

Justification: Only this way it is possible to fully benefit from the type concept of
TIA Portal.

Note This rule contains only generic information about versioning. A detailed
explanation about the automatic versioning of library elements is provided in the
library guideline:

https://support.industry.siemens.com/cs/ww/en/view/109747503

RU003 Rule: Keep only released types in released projects

Finalized projects contain only typified library elements, which are not in status
"in test":

• Blocks (only functions and function blocks)

• PLC data types

https://support.industry.siemens.com/cs/ww/en/view/109747503

6 Reusability

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 32

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

RU004 Rule: Use only local variables

Within a reusable block only local variables may be used. Accessing global data
from within the FC or FB is not permitted. Global data may be passed in via the
formal parameters of the block interface.

Passing global data into a FC is possible for:

• Accesses to global DBs and the use of single instance DBs

• Use of global timers and counters

• Use of global constants

• Access to PLC tags

When the mentioned requirements above are fulfilled, TIA Portal indicates this
automatically in the block header with a status "The object is library-conformant".
This status can therefore be easily used to verify the compliance with this rule.

Figure 6-2

RU005 Rule: Use local symbolic constants

To further encapsulate a block local constant shall be used. When global constants
need to be used, they must be passed into the block via the formal parameters of
the block interface. Global constants shall be defined in their own PLC tag table.

Note When using a global constant in a block a change of its value requires a
recompile of that block. With knowhow protected blocks this requires the
knowledge of the assigned password.

No "magic numbers"

When a variable in the code is being compared to or is being assigned a value
different from 0 (Integer), 0.0 (Real/ LReal), TRUE or FALSE a symbolic constant
shall be used for this.

Justification: An adjustment of the value is much easier this way as this is
centrally in the block header instead of multiple places in the code.

6 Reusability

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 33

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Note Constants are textual replacements for numerical values, which are replaced by
the preprocessor. Therefore, the use has no negative impacts on performance or
memory consumption in the PLC.

It is possible to assign different symbolic constants to the same value (incl. equal to
0).

Example:

STATUS_DONE WORD 16#0000

STANDSTILL_SPEED LREAL 0.0

FREEZING_TEMPERATURE LREAL 0.0

Furthermore, the readability is increased as a symbolic identifier is much easier to
understand than a number.

Example:

Figure 6-3

IF (#velocity < #MAX_VELOCITY) THEN

 #statVelocity := #velocity;

ELSE

 #statVelocity := #MAX_VELOCITY;

END_IF;

RU006 Rule: Program fully symbolic

The programming is done fully symbolic. This means there are no physical
addresses, such as with ANY pointer, used in the program.

Justification: This increases the readability and maintainability due to the symbols
used.

Note The alternative to ANY pointer is the VARIANT data type, optionally a REF_TO
reference. The data type VARIANT detects type errors early on and offers a
symbolic addressing.

6 Reusability

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 34

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

RU007 Recommendation: Program independently from hardware

To guarantee compatibility between the different systems it is recommended to use
exclusively hardware independent data types.

The use of global memory flags and system memory flags is not permitted to
support reusability and hardware independency.

This includes the system provided timers and counters, such as the S5-Timer.
Instead of these data types the use of the IEC conformant types, e.g. IEC_Timer is
encouraged, which can also be used in multi-instances.

The storage of data needed in the whole user program shall be done in a global
data block.

Note A comparison table of the system functions for the hardware independent
programming is available in the Siemens Industry Online Support at the following
entry:

SIMATIC S7-1200/ S7-1500 comparison table for programming languages

https://support.industry.siemens.com/cs/ww/en/view/86630375

RU008 Recommendation: Use templates

Using templates, you can achieve a uniform basis for all programmers. The
functionality provided by the templates can be considered validated and reduce the
development times dramatically.

Another positive aspect is the easier usability and the improved perception due to
the uniform block basis as the blocks provide the same base functionality. As an
example, refer to the PLCopen standard.

Note The referred to templates can be found as master copies in the library of general
functions (LGF):

https://support.industry.siemens.com/cs/ww/en/view/109479728

https://support.industry.siemens.com/cs/ww/en/view/86630375
https://support.industry.siemens.com/cs/ww/en/view/109479728

7 Referencing objects (Allocation)

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 35

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

7 Referencing objects (Allocation)
This chapter describes rules and recommendations for the memory management
and the access.

AL001 Rule: Use multi-instances instead of single instances

In the program multi-instances shall be preferably used instead of single instances.

Justification: With this method the creation of encapsulated modules in the form
of a function block becomes possible. No additional instances in upper level
structures or global structures become necessary, thus reducing the number of
objects.

AL002 Recommendation: Define array boundary from 0 to a constant value

Array boundaries start at 0 and end with a symbolic constant as its upper
boundaries of the array.

• For arrays inside a block the constant must be defined in the local data of the
block interface.

• For an array in global DBs and in PLC data types the constant used as the
upper limit must be defined in a PLC tag table

• As the data type of the constant as well as for the index used to access the
array elements DINT shall be used for performance reasons.

Example:

BUFFER_UPPER_LIMIT DINT 10

diagnostics Array[0..BUFFER_UPPER_LIMIT] of typeDiagnostics

Justification: Beginning the array index at 0 has several benefits as some system
instructions and mathematical operations work zero-based, e.g. modulo function.
This way the index can directly be used in such functions without any adjustments.

Another benefit is, that WinCC (Comfort, Advanced, Professional and Unified) can
handle zero based Arrays, e.g. in their scripting.

In the case that the Array boundaries cannot be zero based, then a symbolic
constant should be used for both the upper and the lower limit.

AL003 Recommendation: Declare array parameter as ARRAY[*]

If an Array must be passed in as a formal parameter, it is recommended to pass it
in as an Array of an unspecified size.

The size and the limits can be determined with the system functions
"UPPER_BOUND" and "LOWER_BOUND".

Example:

diagnostics Array[*] of typeDiagnostics

Justification: Doing this enables the creation of generic program structures.
Especially in knowhow protected blocks a recompile is not necessary as the size is
not declared explicitly in the block interface.

7 Referencing objects (Allocation)

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 36

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

AL004 Recommendation: Specify the required string length

"String" and "WString" always reserve the memory required to store 254
characters. A "String" can contain up to 254 characters, a "WString" can contain up
to 16382 characters. It is recommended to limit all strings to the necessary length
provided as symbolic constant.

Justification: This procedure prevents the system from allocating excessive
memory. Besides that, it provides performance benefits, when passing in the
strings per formal parameter assignment.

Example:

MAX_MESSAGE_LENGTH DINT 24

errorMessage String[#MAX_MESSAGE_LENGTH]

8 Security

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 37

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

8 Security
This chapter describes the rules and recommendations applicable to create an as
robust and secure program as possible.

SE001 Rule: Validate actual values

All actual values that are passed in shall be validated to avoid uncontrolled and
unexpected program execution and states.

In case of implausible or invalid actual values an indication must be provided to the
user, refer also to "DA013 Rule: Report status/ errors via "status"/ "error"".

SE002 Rule: Initialize temporary variables

Every temporary variable used in the block must be initialized before its first use.
The initialization is a direct assignment of either an operation result or a constant in
its usual presentation for the data type (literal).

Refer also to "NF012 Rule: Initialize in the appropriate format"

Justification: As only elementary data types are initialized by the system, all
others have an undefined value, which can cause unexpected program behavior.

Note Using variables with technological blocks, values less than 0.0 have a special
meaning. Depending on the formal parameter instead of the variables value the
default value preconfigured in the technological object will be used.

That is why an appropriate initial value shall be chosen.

SE003 Rule: Handle ENO

With the help of the enable output ENO selected runtime errors can be detected.
The execution of the following instructions depends on the signal state of the ENO.

Justification: The use of the EN/ ENO mechanism avoids unexpected program
interruptions. The block status is passed on in the format of a Boolean variable.

To increase the execution performance of the PLC the automatic EN/ ENO
mechanism can be deactivated. The result of this is, that there is no possibility to
respond to runtime errors using the ENO value anymore. Enabling the following
instructions must be realized manually.

Therefore, under all circumstances an assignment to ENO shall be present in the
program. In its simplest form:

ENO := TRUE;

SE004 Rule: Enable data access via HMI/ OPC UA/ Web API selectively

Per default the access to variables per HMI/ OPC UA/ Web API shall be disabled.
The access to static variables of a FB is not permitted. Variables for read or write
access must be created.

In general, the accessibility via HMI/ OPC UA/ Web API must at least be activated
in the editor for PLC data types to allow accesses. When using the PLC data type
the access to it must be adjusted in the block interface accordingly.

8 Security

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 38

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

SE005 Rule: Evaluate error codes

In case used FCs, FBs or system functions provide error codes to the program,
they must be evaluated.

If the user program cannot handle a reported error, then a unique error must be
provided to the user to allow error localization.

Note Further information about the topic error handling are provided in "DA013 Rule:
Report status/ errors via "status"/ "error"".

SE006 Rule: Write Error OB with evaluation logic

If organization blocks are used for error handling, then they fulfill a certain task.

The minimum requirement is to evaluate the error, the reporting, and handling of it
in the user program.

9 Design guidelines/ architecture

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 39

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

9 Design guidelines/ architecture
This chapter describes the applicable rules and recommendations for program
design and program architecture.

DA001 Rule: Structure and group a project/ library

Split your program into logical units. The system provides several different means
for this matter.

• Group blocks belonging together into a group or folder

• Structure technological machine parts into Software Units

• Structure your program into logical functional units – FC/ FB

• Collate data belonging together into PLC data types

• Structure the program with networks or regions

Note A REGION in SCL is comparable to a network rung in LAD/ FBD.

The name of a region is comparable to the network title and shall be written as
such.

Regions provide several benefits:

• An overview of all regions inside the editor on the left-hand side

• Quick navigation through the code with the help of the overview the linking
inside it.

• The possibility of folding of code fragments

• Quick collapse and expand with the help of the navigation through
synchronization of overview and code

DA002 Recommendation: Use appropriate programming language

Use a programming language suitable for the programming task.

Standard blocks – structured text (SCL/ ST)

The preferred programming language for standard blocks is SCL. It provides the
most compact form and best readability of all programming languages. It supports
the programmer by auto marking all occurrences of a selected code elements.

Call environments – graphical/ block oriented (LAD, FBD)

In case several blocks shall be interconnected, e.g. in an OB as call environment,
then the programming languages LAD or FBD serve best. Also, in the case that
mostly binary logic is contained in the block, LAD or FBD should be used. In these
cases, LAD and FBD allow an easier diagnosis and provide a faster overview for
the service personnel.

Sequential control – flow oriented (GRAPH)

GRAPH is the preferred language, when it comes to programming of sequences.
Using GRAPH sequential steps can be programmed fast and the execution can be
easily followed. Additionally, "Interlocks" and "Supervisions" are already provided
by the system.

9 Design guidelines/ architecture

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 40

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

DA003 Rule: Set/ evaluate block properties

The following settings must be activated in the block properties:

• Auto numbering: Blocks (OB, FC, FB, DB, TO) shall only be delivered with
auto numbering turned on. Be aware that the execution of an Organization
blocks depends on its number/ priority.

• IEC Check: To ensure the IEC conformant programming, the IEC check must
be turned on. Only this way a type conformant and type safe programming can
be ensured.

• Optimized access: For full symbolic programming and the maximum
performance the optimized access to blocks must be activated.

In the block properties the following attributes shall be checked:

• ENO: Refer to "SE003 Rule: Handle ENO".

• Multi-instance capability: The use of a block as a multi-instance capable
block is guaranteed, if this block internally uses multi-instances instead of
global single instances.

• Library conformance: Refer to "RU004 Rule: Use only local variables"

Figure 9-1: Auto numbering

9 Design guidelines/ architecture

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 41

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Figure 9-2: IEC Check, ENO, Optimized access, Multiple instance capability

Figure 9-3: Library conformity

DA004 Rule: Use PLC data types

PLC data types shall be used for structuring in the user program. In the local data
PLC data types are used as well, when the variables are transferred in a single
unit.

Structures (STRUCT) are only declared in the local data of a block, to group
variables in an easier to understand manner, but not to exchange them.

Justification: A change in the PLC data type is automatically updated in all
locations, which eases the data exchange between multiple blocks via formal
parameter.

9 Design guidelines/ architecture

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 42

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

DA005 Rule: Exchange data only via formal parameters

If data is required in multiple FBs or FCs, then the data exchange is done only via
the Input, Output or InOut parameters.

Justification: In the sense of encapsulated blocks data are disconnected from
such reusable blocks and such dependencies are solved. The block does not need
to be modified as the data is passed in via formal parameters. The caller remains in
control, which data is being used where. The data consistency in case of multiple
accesses (possibly in different places within the program) is guaranteed.

DA006 Rule: Access static variables from within the block only

The static data of a function block shall only be used within the block in which they
have been declared.

Justification: With direct access to static variables of an instance the compatibility
cannot be guaranteed, because there is no influence on future updates.
Additionally, it is unclear, which influence the modification of static variable has on
the execution of the FB.

DA007 Recommendation: Group formal parameters

When there are many (e. g. more than ten) parameters to pass, then these
parameters shall be grouped into a PLC data type. This parameter shall be
declared as InOut parameter and will be passed as "Call by reference".

Examples for such parameters are configuration data, actual values, setpoints or
the output of diagnostic data of a function block.

Refer to "PE003 Recommendation: Pass structured parameters as reference"

Note In case of often changing control and status variables it may be beneficial to
make these directly available for an easy monitoring in LAD/ FBD and declare
them as elementary input or output parameter.

DA008 Rule: Write output parameters only once

The output variables and return values are written once per execution cycle. This
shall take place, when possible, collectively towards the end of the block.

It is not permitted to read the own output parameter or return value. Instead of that
a temporary or static variable must be used.

Justification: This makes sure, that all output values are consistent.

9 Design guidelines/ architecture

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 43

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

DA009 Rule: Keep used code only

In the released program only code shall be contained, which is being executed in
the PLC.

Examples for violations:

• Never called blocks or technological objects

• Never used variables or constants

• Never used parameter

• Never executed program code

• Commented out code

• Never accessed PLC variables

• Never used user constants

• External source files

Note Productive code, which may be used at a later point in time depending on an
option, is not affected by this.

DA010 Rule: Develop asynchronous blocks according to PLCopen

The PLCopen organization has defined a standard for Motion Control blocks. This
standard can be generalized in that way, that it can be applied to all asynchronous
blocks. Asynchronous means in this context, that the execution of the function
inside the block extends over multiple (more than one) execution cycles of the
PLC, e.g. for communication, closed loop control or motion control blocks.

Justification: Applying this standard a simplification for the programming and the
use can be achieved.

DA011 Rule: Continuous asynchronous execution with "enable"

Blocks which are started and initialized only once and afterwards remain in
operation to respond to inputs have an "enable" input parameter.

Example: A communication block (acting as server) waits after initialization for
incoming connection requests from a client. After a successful data exchange the
server waits for other incoming connection requests.

Note The block template with enable can be found as master copy in the library of
general functions (LGF):

https://support.industry.siemens.com/cs/ww/en/view/109479728

Setting the parameter "enable" starts the execution of an asynchronous task. If
"enable" remains set, the task execution remains active and new values are being
accepted and processed.

Resetting the parameter "enable" the task will be finished.

Diagnostic information (diagnostics) will be cleared with a new rising edge on
"enable".

If the block is implemented according to PLCopen and the "enable" input para-
meter is used, then at least the output parameter "valid", "error" and "busy" must
be provided.

https://support.industry.siemens.com/cs/ww/en/view/109479728

9 Design guidelines/ architecture

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 44

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Table 9-1

Identifier Data type Description

Input parameters

enable Bool All parameters are being activated with a rising edge
on the input "enable" and may be modified
continuously. The function is level triggered activated
(with TRUE) and deactivated (with FALSE).

Output parameters

valid Bool The outputs "valid" and "error" are mutual exclusive.

The output is set if the output values are valid and the
enable input is set. As soon as an "error" is detected
the output "valid" is reset.

busy Bool The FB is executing a command. New output values
can be expected. The output "busy" is set with a rising
edge on enable and remains set, as long as the FB
executes a command.

error Bool The outputs "valid" and "error" are mutual exclusive.
A rising edge of the output indicates that an error
occurred during the execution of the FB.

commandAborted Bool Optional output, which indicates that the currently
executed task of the FB has been canceled by
another function or another task for the same object.
Example: An axis is being positioned while another
function block stops the same axis. The positioning
function block sets the "commandAborted" output to
indicate, that the command has been aborted by the
Halt command.

status Word Optional output: error and status information of the
block: This parameter has got its name from the
system functions. ("errorID" according to PLCopen)

diagnostics PLC data
type

Optional output: detailed error information

Here all error messages and warnings are being
stored. The structure of the diagnostic information is
described in the recommendation "passing underlying
status information"

Example:

Figure 9-4

 <FunctionBlockName>

Bool enable valid Bool

 busy Bool

 commandAborted Bool

 error Bool

 status Word

 diagnostics PLC data type

9 Design guidelines/ architecture

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 45

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Signal diagram of a block with "enable":

Figure 9-5

1

0

z.B. forward

Active

(OUT)

1

0

command

Aborted

(OUT)

1

0

error

(OUT)

1

0

valid

(OUT)
e)

b)

1

0

z.B. forward

(IN)

1

0

enable

(IN)

a)

f)

1

0

busy

(OUT)

c)

d)

a) With "error" at TRUE the "valid" is being reset and all functions within the block
are being stopped. Because the error can be handled by the block itself the
"busy" flag remains active.

b) After clearing the cause of the error (e.g. reestablishing a connection) "valid"
becomes active again.

c) An error occurs, which can only be cleared by the user, then "error" must be set
and "valid" and "busy" must be reset.

d) Only a falling edge at "enable" clears the current error, which can only be
cleared by the user.

e) "valid" set to TRUE means, the block is active, no errors occurred, and the
output signals of the FB are valid.

f) If "enable" is reset to FALSE, then "valid" and "busy" must be reset as well.

"commandAborted", "error" and "done" must be set for as long as the signal enable
is set, at least for one execution cycle.

9 Design guidelines/ architecture

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 46

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

DA012 Rule: Single asynchronous execution with "execute"

Blocks, which get executed only once have an input parameter "execute".

Example: A communication block (client) requests data of a server only once. This
is triggered by an edge at the input signal "execute". After the processing the reply
the execution is done. A new request is placed by another edge on "execute".

Note The block template with "execute" can be found as master copy in the library of
general functions (LGF):

https://support.industry.siemens.com/cs/ww/en/view/109479728

A rising edge on "execute" starts the task and the values at the input parameters
are applied.

Any changes to the values after the start of the task only take effect after a start of
a new task, unless "continuousUpdate" is being used.

The reset of the parameter "execute" does no stop the execution of the current task
but has an influence on the display duration of the execution status. If "execute"
gets reset before the current task has finished, then the parameter "done", "error"
and "commandAborted" will be set for only one cycle.

Diagnostic information ("diagnostics") will be cleared only with a new rising edge on
"execute".

After finishing the task, a new rising edge on "execute" is necessary to start a new
task. This ensures the block is its initial state and the task can be executed
independent of previous tasks.

If the block is implemented according the PLCopen standard and the "execute"
input parameter is used, then the output parameter "busy", "done" and "error" must
be used.

Table 9-2

Identifier Data type Description

Input parameters

execute Bool "execute" without "continuousUpdate":

All parameters are taken over with a rising edge on
"execute" and the implemented function is started.
When changes on the input parameter become
necessary, a new rising edge on "execute" is required.

"execute" with "continuousUpdate":

All parameters are taken over with a rising edge on
"execute". Their values can be adjusted if the input
"continuousUpdate" is set.

continuousUpdate Bool Optional input:

Refer to "execute" input

Output parameters

done Bool The outputs "done", "busy", "commandAborted" and
"error" are mutual exclusive.

The output "done" is being set, if the command was
executed successfully.

busy Bool The outputs done, busy, commandAborted and error
are mutual exclusive.

The FB is not done with the execution of the command,
which means that new output values can be expected.
busy is set with a rising edge on execute and reset, if
one of the outputs done, commandAborted or error is
being set.

https://support.industry.siemens.com/cs/ww/en/view/109479728

9 Design guidelines/ architecture

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 47

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Identifier Data type Description

error Bool The outputs "done", "busy", "commandAborted" and
"error" are mutual exclusive.

A rising edge of the output indicates that an error
occurred during the execution of the FB.

commandAborted Bool The outputs "done", "busy", "commandAborted" and
"error" are mutual exclusive.

Optional output, which indicates that the currently
executed command has been aborted by another
function or by another command to the same object.

Example: An axis is being positioned while another
function block stops the same axis. The positioning
function block sets the "commandAborted" output to
indicate, that the command has been aborted by the
Halt command.

status Word Optional output: Error and status information of the
block:

This parameter has got its name from the system
functions. ("errorID" according to PLCopen)

diagnostics PLC data
type

Optional output: Detailed error information.

Here all error messages and warnings are being
stored. The structure of the diagnostic information is
described in the recommendation "passing underlying
status information"

Example:

Figure 9-6

 <FunctionBlockName>

Bool execute done Bool

 busy Bool

 commandAborted Bool

 error Bool

 status Word

 diagnostics PLC data type

9 Design guidelines/ architecture

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 48

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Signal diagram of a block with "execute":

Note If the input parameter "execute" is being reset before the output parameter
"done" or "error" are being set, then "done" or "error" must be set for one cycle
only.

Figure 9-7

1

0

1

0

1

0

1

0

execute

(IN)

busy

(OUT)

done

(OUT)

error

(OUT)

command

Aborted

(OUT)

1

0

a)

c)

b) e)d)

a) "done", "error" and "commandAborted" are being reset with a falling edge on
"execute".

b) The functionality of the FB is not being stopped by a falling edge on "execute".

c) If "execute" is already FALSE, then "done", "error" and "commandAborted" are
being set only for one cycle.

d) A new command is requested with a rising edge on "execute" while to previous
command is still in execution ("busy" = TRUE). The previous command shall be
either finished with the previously used parameters or the previous command
shall be aborted and restarted with the new parameters. The behavior depends
on the use case scenario and must be documented.

e) In case the execution of a command is interrupted by another command of the
same or higher priority (from another block/ instance), then the block sets the
"commandAborted" output parameter. The block stops any remaining execution
of the command. This scenario can occur, when an emergency stop is issued,
while an axis executes a positioning command.

9 Design guidelines/ architecture

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 49

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

DA013 Rule: Report status/ errors via "status"/ "error"

The block reports a unique status at its output parameter "status", which provides
information about the internal status of the block. The values must be defined as
local symbolic constants in the block interface to avoid double usage and increase
the readability.

Reports the block an error the output parameter "status" and "error" shall be used.
Following the below described status concept, the parameter of "error" is the MSB
of the "status" (bit 15). The remaining bits are being utilized for the error code,
which allows an identification of the cause of the error.

For compatibility reasons to the SIMATIC system blocks the output "errorID", which
is mandatory in the PLCopen standard, is replaced by the output "status".

Justification: This allows to pass on further detailed information about the block’s
status via the output "status", which do not contain error information.

Figure 9-8

3

Classification of status:
16#0 = Execution finished
16#7 = Execution possible or execution in progress
16#8 = Error occurred in execution
16#9 = User defined error

Detailed status information, e.g. identifier for error or status

Status Word

Nibble 2 1 0

DA014 Rule: Use standardized value ranges for "status"

For a standardization of the output parameter "status" the below defined value
ranges for information and errors shall be used.

Table 9-3

Information Value range

Command finished, no warnings and no further details 16#0000

Command finished, further details 16#0001 ... 16#0FFF

No command in execution (initial value) 16#7000

First call after receiving a new command

(rising edge on execute)

16#7001

Follow up call during active execution of a command
without further details

16#7002

Follow up call during active execution of a command
with further details.

Warnings without effect of further processing.

16#7003 ... 16#7FFF

9 Design guidelines/ architecture

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 50

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Table 9-4

Error Value range

Wrong operation of the function block 16#8001 ... 16#81FF

Wrong parameterization 16#8200 ... 16#83FF

Errors during execution from outside
(e.g. wrong I/O signals, axis not homed)

16#8400 ... 16#85FF

Internal error during execution

(e.g. during a system call)

16#8600 ...16#87FF

Reserved 16#8800 ... 16#8FFF

User defined error classes 16#9000 ... 16#FFFF

DA015 Recommendation: Pass underlying information

If a block calls other subfunctions, which report detailed status and possibly
diagnostic information, then they must be copied into a diagnostic structure at the
output parameter "diagnostics". Further this diagnostic structure may contain
additional values for diagnostic purposes, such as runtime information.

Note The diagnostic structure may be stored persistent to allow a diagnosis even after
a power failure.

Example for a simple diagnostic structure:

Figure 9-9

The simple diagnostic structure contains three parameters:

Table 9-5

Identifier Data type Description

status Word Status of the current block

subfunctionStatus Word/ DWord Status of the underlying subfunction

stateNumber DInt Number if the internal execution state/
execution step, where the error occurred.

9 Design guidelines/ architecture

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 51

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

Example for an extended diagnostic structure:

Figure 9-10

The variable "timestamp" contains the point in time when the error occurred.

In "stateNumber" the current internal state of the internal state machine is stored.

If there is an error of a system function or a called FB/ FC, its status shall be stored
in the variable "subfunctionStatus".

The unique error code of the output parameter shall be copied to the variable
"status" of the diagnostic structure.

Additional variables amending an error (also underlying variables) can be added to
the diagnostic structure with an appropriate data type, e.g. with the help of
"additionalValueX", where "X" is replaced by an increasing number starting by 1.

DA016 Recommendation: Use CASE instruction instead of ELSIF branches

When possible use the CASE instruction instead of the IF instruction with multiple
ELSIF branches.

Justification: The program becomes more readable.

DA017 Rule: Create ELSE branch in CASE instructions

A CASE instruction must always have an ELSE branch.

Justification: This serves the purpose to report errors, which may occur at
runtime.

Example:

CASE #stateSelect OF

 CMD_INIT: // Comment

 ; // Statement

 CMD_READ: // Comment

 ; // Statement

ELSE

 // default statement

 ; // Generate error message

END_CASE;

DA018 Recommendation: Avoid Jump and Label

Avoid jumps within the program whenever possible. Jumps are only permissible on
an exceptional basis, if there is no other method possible to realize the program.

Justification: Jumps lead to programs, which are difficult to follow as these
instructions may jump from one place to another inside the program.

10 Performance

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 52

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

10 Performance
In this chapter the rules and recommendations are described, which support the
development of performant user programs.

PE001 Recommendation: Deactivate "Create extended status info"

Deactivating the "Create extended status information" may lead in the productive
operation to a better performance. During the development process and for
debugging purposes of the user program it may be beneficial to activate this
setting.

Figure 10-1

PE002 Recommendation: Avoid "Set in IDB"

To allow block optimization and for the sake of full symbolic programming the
functionality "Set in IDB" in the block interface shall be avoided.

Justification: The use of "Set in IDB" causes the system to create a hybrid DB
made up of optimized and non-optimized data areas. Accessing these data causes
the system to copy these data into the other data format.

Note "Set in IDB" is being used mostly in conjunction with the "AT construct". Instead
Slice accesses or the system functions SCATTER and GATHER may be used.

PE003 Recommendation: Pass structured parameters as reference

To pass data as performant (memory and runtime optimized) as possible into the
formal parameters of the block interface, it is recommended to use the
"Call by reference" schema.

Justification: Calling a block a reference to the actual parameters are being
passed. For this the actual parameters are not copied.

Note Using this method, the original data may be modified.

If optimized data is passed to a block with the deactivated property "Optimized
block access" (or vice versa) when the block is called, the data is always passed
as a copy. If the block contains many structured parameters, this can lead to the
temporary memory area of the block overflowing. You can avoid this by setting
the "optimized" access type for both blocks.

10 Performance

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 53

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

The following table provides an overview of how formal parameters with elemen-
tary and structured data are passed in a SIMATIC S7-1200/ S7-1500 PLC.

Table 10-1

Block type/ formal parameter Elementary
 data type

Structured
 data type

FC Input Copy Reference

Output Copy Reference

InOut Copy Reference

FB Input Copy Copy

Output Copy Copy

InOut Copy Reference

PE004 Recommendation: Avoid formal parameter with Variant

To avoid performance losses due to the use of Variant, it is recommended to keep
separate blocks for different data types.

You only need to use Variant if, for example, you need to pass data to a block for
communication in order to pass it on to the internal system communication
modules or for serialization.

PE005 Recommendation: Avoid formal parameter "mode"

Avoid developing blocks that operate differently depending on a input parameter,
e.g. "mode".

Justification: This prevents code fragments that are not are needed ("dead
code"), since the mode parameter is usually connected statically.

Instead, you should distribute the functionalities to individual modules:

• This reduces memory consumption and increases performance through code
reduction.

• It increases readability through better differentiation and better naming.

• It increases maintainability through smaller code fragments, which are
independent of each other.

PE006 Recommendation: Prefer temporary variables

Variables should be declared as temporary variables if they are only needed in the
current cycle. Temporary variables offer the best performance in the block.

If input or in/out parameters are accessed frequently, a temporary variable should
be used as a cache to improve the runtime.

Note Temporary variables cannot be monitored or forced in watch tables or force
tables.

PE007 Recommendation: Declare important test variables as static

Important test variables should be declared statically. They must provide enough
information about the state of the functions.

Justification: The value of a static test variable remains even after the execution
of a block is finished. This way it can be used for diagnostic purposes.

10 Performance

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 54

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

PE008 Recommendation: Declare control/ index variables as "DInt"

It is recommended to use the data type "DInt" for control and index variables that
are used for loops, iterations and array access.

Justification: The data type "DInt" can be processed with the best performance,
since no type conversion is necessary. Accordingly, the definitions for the array
sizes and loop boundaries should also be created as constants of the data type
"DInt".

PE009 Recommendation: Avoid multiple access using the same index

Avoid repeated access to the same index of an array. A temporary variable should
be used as cache.

Justification: This method reduces the internal system checks of the array
boundaries and the check of exceeding them to a minimum.

Example:

FOR #tempIndex := 0 TO #MAX_ARRAY_ELEMENTS DO

 // Copy to temporary variable

 #tempCurrentData := #statArray[#tempIndex];

 // Reset all member variables

 #tempCurrentData.element1 := FALSE;

 #tempCurrentData.element2 := FALSE;

 #tempCurrentData.element3 := FALSE;

 #tempCurrentData.element4 := FALSE;

 #tempCurrentData.element5 := FALSE;

 // Write back the changes made

 #statArray[#tempIndex] := #tempCurrentData;

END_FOR;

PE010 Recommendation: Use slice access instead of masking

Instead of masking for a few individual bit accesses, the slice access can be used
to access individual bits.

Justification: This method increases performance and readability of the source
code.

Example: Evaluating Bit1 = TRUE and Bit0 = FALSE using slice access

#tempIsTriggered := (#trigger.%X1 AND NOT #trigger.%X0);

Masking is recommended whenever bit patterns are to be compared with variables.

Example: Evaluating Bit1 = TRUE and Bit0 = FALSE using masking

PATTERN_MASK BYTE 2#00000011

PATTERN BYTE 2#00000010

#tempIsTriggered := ((#trigger AND #PATTERN_MASK) = #PATTERN);

10 Performance

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 55

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

PE011 Recommendation: Simplify IF/ ELSE instructions

Simplifying IF/ ELSE instructions to simple binary operations improves perfor-
mance and reduces memory consumption.

Negative example demonstrating edge detection:

// Check for rising edge

IF #trigger AND NOT #statTriggerOld THEN

 #tempIsTrigger := TRUE;

ELSE

 #tempIsTrigger := FALSE;

END_IF;

// Store trigger for next cycle

#statTriggerOld := #trigger;

correct example:

// Check for rising edge

#tempIsTrigger := #trigger AND NOT #statTriggerOld;

// Store trigger for next cycle

#statTriggerOld := #trigger;

PE012 Recommendation: Sort IF/ ELSIF branches according to expectation

IF/ ELSIF statements, should be ordered by decreasing likelihood so that the most
likely case should come first and so forth.

Justification: This avoids evaluations for less likely conditions and therefore
improves performance.

Example: Assuming the program flow has been implemented error free and the
ideal situation is known, then the likeliest condition is evaluated first.

// Check if connection is established

IF #instConnect.done = TRUE THEN

 // Connection is established - set next state

 ;

// Check if TCON throws an error

ELSIF #instConnect.error = TRUE THEN

 // TCON throws an error - do error handling

 ;

END_IF;

PE013 Recommendation: Avoid memory intense instructions

The use of memory intense instructions, like:

• "GetSymbolName"

• "GetSymbolPath"

• "GetInstanceName"

• "GetInstancePath"

shall be avoided.

Justification: The use of the mentioned instructions above results in increased
working memory usage. The amount being used depends on the number of
instruction calls and the length of the symbolic identifiers.

10 Performance

2.6 Terms used with variables and parameters

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 56

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

PE014 Recommendation: Avoid runtime intense instructions

The use of the runtime intense instructions shall be reduced to a minimum.

Runtime-intense instructions are instructions that process large amounts of data,
such as "Serialize" and "Deserialize" or those who access the memory card.

The system functions "WRITE_DBL", "READ_DBL", "FileRead" and "FileWrite"
access comparatively slow SIMATIC Memory Card. This is typically done
asynchronously and may take several cycles. However, since larger data quantities
are transferred, the use of these system functions can have a negative impact on
the overall program duration.

Further examples for accesses to the SIMATIC Memory Card are DataLog and
Recipe functions.

PE015 Recommendation: Use of SCL/ LAD/ FBD for time critical applications

For time-critical programs/ program parts and algorithms it is recommended to use
one of the three programming languages SCL, LAD or FBD.

Justification: GRAPH as programming language generates additional diagnostic
information, which require additional runtime. GRAPH is recommended to program
sequential machine flows.

PE016 Recommendation: Check the setting for minimum cycle time

For time critical application without a high communication load the "Minimum cycle
time" can be turned off, to allow for a fast response time.

High communication loads can be counteracted by enabling and raising the
"minimum cycle time".

Figure 10-2

11 Cheat sheet

Programming style guide for SIMATIC S7-1200/ S7-1500

Beitrags-ID: 81318674, V2.0, 05/2020 57

© Siemens AG 2020 All rights reserved

11 Cheat sheet

In Out InOut Stat Temp Const

enable done conveyorAxes

instTimer

statState

instTimer

powerBusReady

tempIndex MAX_VELOCITY

Prefix

-- -- -- (default)

"inst" (param-instance)

"stat" (default)

"inst" (multi-instance)

-- (in global data block)

"temp" --

Casing camelCasing camelCasing camelCasing camelCasing camelCasing UPPER_CASING

PLC tag User constant

lightBarrierLeft MAX_BELTS

Prefix -- --

Casing camelCasing UPPER_CASING

Prefix Casing

AssemblyLine -- PascalCasing Min / Max Minimum / Maximum

LCom "L" PascalCasing Act Actual, Current

Main -- PascalCasing Next / Prev Next / Previous value

HeatTank -- PascalCasing Avg Average

CalculateTime -- PascalCasing Sum Total sum

MachineData -- PascalCasing Diff Difference

InstHeater "Inst" PascalCasing Cnt Count

HeatingAxis -- PascalCasing Len Length

Sensors -- PascalCasing Pos Position

MachineState -- PascalCasing Ris / Fal Rising / falling edge

ConveyorSpeed -- PascalCasing Old Old value

Temperature -- PascalCasing Sim Simulated

ConveyorAlarms -- PascalCasing Dir Direction

Magazine -- PascalCasing Err / Warn Error / Warning

typeDiagnostics "type" camelCasing Cmd Command

stateNumber -- camelCasing Addr Address

Block interface

Measurement

Element in a PLC datatype

PLC datatype

Technological ob ject

Single instance data b lock

Watch/Force table

PLC tag table

Software unit

PLC alarm text list

Trace

Global data b lock

Object

Tag table

Function b lock

Function

Library

Organization b lock

Project

Programming styleguide for

SIMATIC S7-1200/ S7-1500

in TIA Portal

- Unique, meaningful identifiers in English

- Only the characters a-z, A-Z, 0-9 and _

- Maximum 24 characters per identifier

- Library: Name max. 8 chars; prefix "LExample_"

- Array: axesData [0..#MAX] of type…

U
s

u
a

l
a

b
b

re
v

ia
ti

o
n

s

(m
a

x
im

u
m

 o
n

e
 p

e
r

id
e

n
ti
fi
e

r)

12 Annex

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 58

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

12 Annex

12.1 Service and Support

Industry Online Support

You have question or need support?

Via the Industry Online Support, you have 24/7 access to the complete Service and
Support Know-how as well as to our service offerings.

The Industry Online Support is the central address for information about our
products, solutions and services.

Product information, manuals, downloads, FAQs and application examples – all
information are only a few mouse clicks away:
https://support.industry.siemens.com

Technical Support

The Technical Support of Siemens Industry supports you fast and competent with
all technical requests with a wide variety of tailored offerings
- starting with the basic support up to individual support contracts.

Requests to the Technical Support can be send via the WebForm:
www.siemens.de/industry/supportrequest

SITRAIN – Training for Industry

With our worldwide available trainings for our products and solutions we support
you, with innovative learning methods and a customized concept.

More about the offered trainings and courses as well as our locations and
schedules you can find at:
www.siemens.de/sitrain

Service

Our service offering contains the following:

• Plant Data services

• Spare Part services

• Repair services

• On Site and Maintenance services

• Retrofit- and Modernization services

• Service programs and contracts

Detailed information to our service offering can be found in our service catalogue:
https://support.industry.siemens.com/cs/sc

Industry Online Support App

With the App "Siemens Industry Online Support" you will get the optimum support
even on the road. The App is available on Apple iOS, Android and Windows
Phone:
https://support.industry.siemens.com/cs/ww/en/sc/2067

https://support.industry.siemens.com/
http://www.siemens.de/industry/supportrequest
http://www.siemens.de/sitrain
https://support.industry.siemens.com/cs/sc
https://support.industry.siemens.com/cs/ww/en/sc/2067

12 Annex

Programming style guide for SIMATIC S7-1200/ S7-1500
Beitrags-ID: 81318674, V2.0, 05/2020 59

©
 S

ie
m

e
n
s
 A

G
 2

0
2
0
 A

ll
ri

g
h
ts

 r
e
s
e
rv

e
d

12.2 Links and Literature

Table 12-1

 Topic

\1\ Siemens Industry Online Support

http://support.industry.siemens.com/

\2\ Download page of this entry
https://support.industry.siemens.com/cs/ww/en/view/81318674

\3\ Standardization guideline

https://support.industry.siemens.com/cs/ww/en/view/109756737

\4\ Library guideline

https://support.industry.siemens.com/cs/ww/en/view/109747503

\5\ Provide user defined documentation

https://support.industry.siemens.com/cs/ww/en/view/109755202/114872699275

\6\ SIMATIC S7-1200/ S7-1500 Compare list for programming languages

https://support.industry.siemens.com/cs/ww/en/view/86630375

\7\ Library of General Functions (LGF) for SIMATIC STEP 7 (TIA Portal) and
SIMATIC S7-1200/ S7-1500

https://support.industry.siemens.com/cs/ww/en/view/109479728

12.3 History

Table 12-2

Version Date Changes

V1.0 10/2014 First Release after internal review

V1.1 06/2015 Adaptations and Corrections

V1.2 10/2016 Adaptations and Corrections

New: Cheat sheet

V2.0 05/2020 Categorization and Modernizing

• Categorization according to Workflow

• Extend topics for Performance and Design-/
Architecture

• Extend Programming guidelines

• Amendment of Justifications

• Review of Cheat sheet

http://support.industry.siemens.com/
https://support.industry.siemens.com/cs/ww/en/view/81318674
https://support.industry.siemens.com/cs/ww/en/view/109756737
https://support.industry.siemens.com/cs/ww/en/view/109747503
https://support.industry.siemens.com/cs/ww/en/view/109755202/114872699275
https://support.industry.siemens.com/cs/ww/en/view/86630375
https://support.industry.siemens.com/cs/ww/en/view/109479728

	Programming style guide
	Legal information
	1 Introduction
	1.1 Goal
	1.2 Advantages of a uniform programming
	1.3 Applicability
	1.4 Scope
	1.5 Rule violations and other regulations

	2 Definitions
	2.1 Rules/ Recommendations
	2.2 Enumerating rules
	2.3 Performance
	2.4 Identifier/ Naming
	2.5 Abbreviations
	2.6 Terms used with variables and parameters

	3 Settings in TIA Portal
	4 Globalization
	5 Nomenclature and Formatting
	6 Reusability
	7 Referencing objects (Allocation)
	8 Security
	9 Design guidelines/ architecture
	10 Performance
	11 Cheat sheet
	12 Annex
	12.1 Service and Support
	12.2 Links and Literature
	12.3 History

