
EcoStruxure Machine Expert Twin

Creating Customized Catalogs
User Guide

EIO0000005040.00
03/2024

www.se.com

https://www.se.com

Legal Information
The information provided in this document contains general descriptions, technical
characteristics and/or recommendations related to products/solutions.

This document is not intended as a substitute for a detailed study or operational and
site-specific development or schematic plan. It is not to be used for determining
suitability or reliability of the products/solutions for specific user applications. It is the
duty of any such user to perform or have any professional expert of its choice
(integrator, specifier or the like) perform the appropriate and comprehensive risk
analysis, evaluation and testing of the products/solutions with respect to the relevant
specific application or use thereof.

The Schneider Electric brand and any trademarks of Schneider Electric SE and its
subsidiaries referred to in this document are the property of Schneider Electric SE or
its subsidiaries. All other brands may be trademarks of their respective owner.

This document and its content are protected under applicable copyright laws and
provided for informative use only. No part of this document may be reproduced or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), for any purpose, without the prior written permission of
Schneider Electric.

Schneider Electric does not grant any right or license for commercial use of the
document or its content, except for a non-exclusive and personal license to consult it
on an "as is" basis.

Schneider Electric reserves the right to make changes or updates with respect to or in
the content of this document or the format thereof, at any time without notice.

To the extent permitted by applicable law, no responsibility or liability is
assumed by Schneider Electric and its subsidiaries for any errors or omissions
in the informational content of this document, as well as any non-intended use
or misuse of the content thereof.

Creating Customized Catalogs

Table of Contents

Safety Information...5

About the Book..6

Steps to Create a Digital Model of Your Mechatronic System............12
Identifying the Movements of the Machine ..14
Extracting CAD Files per Axis ..15
Creating a Hierarchical Concept of Parent-Child Relations...........................19

Catalog Programming in C#..20
Catalog Template Configuration...20
Project Configuration in Microsoft Visual Studio ..21
Importing CAD Files to Microsoft Visual Studio..21
Programming in Microsoft Visual Studio ...22
Programming Relations...23
Building and Debugging the Catalog ..24

Appendix: Programming Code..26
DiskTracking.cs ..26
Load.cs..34
Motion.cs ...37

Glossary ...39

Index ...41

EIO0000005040.00 3

Safety Information
Important Information

Read these instructions carefully, and look at the equipment to become familiar
with the device before trying to install, operate, service, or maintain it. The
following special messages may appear throughout this documentation or on the
equipment to warn of potential hazards or to call attention to information that
clarifies or simplifies a procedure.

Please Note
Electrical equipment should be installed, operated, serviced, and maintained only
by qualified personnel. No responsibility is assumed by Schneider Electric for any
consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction
and operation of electrical equipment and its installation, and has received safety
training to recognize and avoid the hazards involved.

The addition of this symbol to a “Danger” or “Warning” safety label indicates that an
electrical hazard exists which will result in personal injury if the instructions are not
followed.

This is the safety alert symbol. It is used to alert you to potential personal injury
hazards. Obey all safety messages that follow this symbol to avoid possible injury or
death.

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious
injury.

! DANGER

WARNING indicates a hazardous situation which, if not avoided, could result in death or
serious injury.

WARNING!

CAUTION indicates a hazardous situation which, if not avoided, could result in minor or
moderate injury.

CAUTION!

NOTICE is used to address practices not related to physical injury.

NOTICE

EIO0000005040.00 5

Safety Information Creating Customized Catalogs

About the Book
Document Scope

This document describes how to create a digital model of your mechatronic
system as well as the corresponding catalog programming in C#.

Validity Note
This document has been created for the release of EcoStruxure Machine Expert
Twin V2.0.

Related Documents
Document title Reference

Cybersecurity Best Practices CS-Best-Practices-2019-340

Cybersecurity Guidelines for EcoStruxure
Machine Expert, Modicon and PacDrive
Controllers and Associated Equipment

EIO0000004242

EcoStruxure Machine Expert
DigitalTwinCommunication - Library Guide

EIO0000004735 (ENG)

EcoStruxure Machine Expert How to Emulate -
User Guide

EIO0000004858 (ENG);

EIO0000004859 (FRE);

EIO0000004860 (GER);

EIO0000004862 (SPA);

EIO0000004861 (ITA);

EIO0000004863 (CHS)

EcoStruxure Machine Expert Twin Getting
Started - User Guide

EIO0000005022 (ENG)

To find documents online, visit the Schneider Electric download center
(www.se.com/ww/en/download/).

6 EIO0000005040.00

Creating Customized Catalogs About the Book

https://www.se.com/ww/en/download/document/CS-Best-Practices-2019-340/
https://www.se.com/en/download/document/EIO0000004242
https://www.se.com/en/download/document/EIO0000004735
https://www.se.com/en/download/document/EIO0000004858
https://www.se.com/en/download/document/EIO0000004859
https://www.se.com/en/download/document/EIO0000004860
https://www.se.com/en/download/document/EIO0000004862
https://www.se.com/en/download/document/EIO0000004861
https://www.se.com/en/download/document/EIO0000004863
https://www.se.com/en/download/document/EIO0000005022
https://www.se.com/ww/en/download/

Product Related Information

WARNING
LOSS OF CONTROL
• Perform a Failure Mode and Effects Analysis (FMEA), or equivalent risk

analysis, of your application, and apply preventive and detective controls
before implementation.

• Provide a fallback state for undesired control events or sequences.
• Provide separate or redundant control paths wherever required.
• Supply appropriate parameters, particularly for limits.
• Review the implications of transmission delays and take actions to mitigate

them.
• Review the implications of communication link interruptions and take actions

to mitigate them.
• Provide independent paths for control functions (for example, emergency

stop, over-limit conditions, and error conditions) according to your risk
assessment, and applicable codes and regulations.

• Apply local accident prevention and safety regulations and guidelines.1

• Test each implementation of a system for proper operation before placing it
into service.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

1 For additional information, refer to NEMA ICS 1.1 (latest edition), Safety
Guidelines for the Application, Installation, and Maintenance of Solid State Control
and to NEMA ICS 7.1 (latest edition), Safety Standards for Construction and
Guide for Selection, Installation and Operation of Adjustable-Speed Drive
Systems or their equivalent governing your particular location.

WARNING
UNINTENDED EQUIPMENT OPERATION
• Only use software approved by Schneider Electric for use with this

equipment.
• Update your application program every time you change the physical

hardware configuration.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

EIO0000005040.00 7

About the Book Creating Customized Catalogs

For reasons of Internet security, for those devices that have a native Ethernet
connection, TCP/IP forwarding is disabled by default. Therefore, you must
manually enable TCP/IP forwarding. However, doing so may expose your network
to possible cyberattacks if you do not take additional measures to protect your
enterprise. In addition, you may be subject to laws and regulations concerning
cybersecurity.

WARNING
UNAUTHENTICATED ACCESS AND SUBSEQUENT NETWORK INTRUSION
• Observe and respect any and all pertinent national, regional and local

cybersecurity and/or personal data laws and regulations when enabling
TCP/IP forwarding on an industrial network.

• Isolate your industrial network from other networks inside your company.
• Protect any network against unintended access by using firewalls, VPN, or

other, proven security measures.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

Consult the Schneider Electric Cybersecurity Best Practices for additional
information.

EcoStruxure Machine Expert Twin is a simulation and emulation software suite to
create digital models of real machines to start the virtual design, virtual pre-
commissioning, and to support co-development before building the machine –
thus enabling parallel engineering of mechanical, electrical and controls work
assignments.

The simulation, emulation and machine visualization functions of EcoStruxure
Machine Expert Twin are intended to support you in developing your application
and its configuration by simulating the behavior of the various machine or process
components. These functions are not intended to substitute for, but to complement
the processes of risk assessment, risk evaluation, validation, and commissioning
as well as any ancillary processes, tasks, and obligations according to the
applicable regulations and standards such as ISO/EN 13849 and IEC 62061. The
product, though powerful, does not, nor can it, simulate every aspect of the
application and its environment.

WARNING
INSUFFICIENT TEST COVERAGE
• Do not use EcoStruxure Machine Expert Twin as the sole means for risk

assessment, risk evaluation, validation, and commissioning as well as any
ancillary processes, tasks, and obligations according to the applicable
regulations and standards such as, but not limited to, ISO/EN 13849 and IEC
62061.

• Verify and validate your results on the intended equipment before placing
your machine or process into service.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

8 EIO0000005040.00

Creating Customized Catalogs About the Book

https://www.se.com/ww/en/download/document/CS-Best-Practices-2019-340

Based on the system configuration and operation, a hazard and risk analysis must
be conducted for the system (for example, according to ISO 12100 or ISO 13849-
1) independent of the work with EcoStruxure Machine Expert Twin. The results of
this analysis must be considered when designing the machine, and subsequently
applying safety-related equipment and safety-related functions. The results of
your analysis may deviate from any digital models of physical machines that you
may create. For example, additional safety components may be required. In
principle, the results from the hazard and risk analysis have priority.

WARNING
NON-CONFORMANCE TO SAFETY FUNCTION REQUIREMENTS
• Specify the requirements and/or measures to be implemented in the risk

analysis you perform.
• Verify that your safety-related application complies to applicable safety

regulations and standards.
• Make certain that appropriate procedures and measures (according to

applicable sector standards) have been established to help avoid hazardous
situations when operating the machine.

• Use appropriate safety interlocks where personnel and/or equipment
hazards exist.

• Validate the overall safety-related function and thoroughly test the
application.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

Catalogs contain important data, parameters and operational aspects of the
devices defined within. This information is subject to change over time for a variety
of reasons. Therefore, it is necessary to maintain the relationship between the
models you create and the catalogs you have used to do so. Version mismatches
of catalogs may cause your models to operate in ways that are incongruent with
the equipment they represent and may lead to errors in design and operation.

WARNING
UNINTENDED EQUIPMENT OPERATION
• Impose a system of file name conventions that readily indicate the version of

the catalogs you use and models you create.
• Create documentation that records catalog and model versions, as well as

firmware versions of the equipment used in your models.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

In addition, changes to your underlying application (logic, data address, functions,
I/O configurations, device types and configuration, etc.) can have serious impact
on the models you have created.

WARNING
UNINTENDED EQUIPMENT OPERATION
• Update your models every time you modify your application or change the

physical hardware configuration.
• Verify that objects you have created in your models are coherent with the

modifications and/or changes you have made to your application and that
they are associated with the correct variables.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

EIO0000005040.00 9

About the Book Creating Customized Catalogs

It is also important to connect to the correct automation logic/motion controller in a
networked, multi-controller environment.

WARNING
UNINTENDED EQUIPMENT OPERATION

Verify that you have connected to the intended automation controller.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

It is important to manage the amount of data that is transmitted between your
automation logic/motion controller and EcoStruxure Machine Expert Twin. Large
amounts of data, or data that is not contiguous in the controller memory may
impact performance of EcoStruxure Machine Expert Twin, the controller or both.

Information on Non-Inclusive or Insensitive Terminology
As a responsible, inclusive company, Schneider Electric is constantly updating its
communications and products that contain non-inclusive or insensitive
terminology. However, despite these efforts, our content may still contain terms
that are deemed inappropriate by some customers.

Terminology Derived from Standards
The technical terms, terminology, symbols and the corresponding descriptions in
the information contained herein, or that appear in or on the products themselves,
are generally derived from the terms or definitions of international standards.

In the area of functional safety systems, drives and general automation, this may
include, but is not limited to, terms such as safety, safety function, safe state, fault,
fault reset, malfunction, failure, error, error message, dangerous, etc.

Among others, these standards include:

Standard Description

IEC 61131-2:2007 Programmable controllers, part 2: Equipment requirements and tests.

ISO 13849-1:2023 Safety of machinery: Safety related parts of control systems.

General principles for design.

EN 61496-1:2013 Safety of machinery: Electro-sensitive protective equipment.

Part 1: General requirements and tests.

ISO 12100:2010 Safety of machinery - General principles for design - Risk assessment
and risk reduction

EN 60204-1:2006 Safety of machinery - Electrical equipment of machines - Part 1: General
requirements

ISO 14119:2013 Safety of machinery - Interlocking devices associated with guards -
Principles for design and selection

ISO 13850:2015 Safety of machinery - Emergency stop - Principles for design

IEC 62061:2021 Safety of machinery - Functional safety of safety-related electrical,
electronic, and electronic programmable control systems

IEC 61508-1:2010 Functional safety of electrical/electronic/programmable electronic safety-
related systems: General requirements.

IEC 61508-2:2010 Functional safety of electrical/electronic/programmable electronic safety-
related systems: Requirements for electrical/electronic/programmable
electronic safety-related systems.

IEC 61508-3:2010 Functional safety of electrical/electronic/programmable electronic safety-
related systems: Software requirements.

10 EIO0000005040.00

Creating Customized Catalogs About the Book

Standard Description

IEC 61784-3:2021 Industrial communication networks - Profiles - Part 3: Functional safety
fieldbuses - General rules and profile definitions.

2006/42/EC Machinery Directive

2014/30/EU Electromagnetic Compatibility Directive

2014/35/EU Low Voltage Directive

In addition, terms used in the present document may tangentially be used as they
are derived from other standards such as:

Standard Description

IEC 60034 series Rotating electrical machines

IEC 61800 series Adjustable speed electrical power drive systems

IEC 61158 series Digital data communications for measurement and control – Fieldbus for
use in industrial control systems

Finally, the term zone of operation may be used in conjunction with the description
of specific hazards, and is defined as it is for a hazard zone or danger zone in the
Machinery Directive (2006/42/EC) and ISO 12100:2010.

NOTE: The aforementioned standards may or may not apply to the specific
products cited in the present documentation. For more information concerning
the individual standards applicable to the products described herein, see the
characteristics tables for those product references.

EIO0000005040.00 11

About the Book Creating Customized Catalogs

Steps to Create a Digital Model of Your Mechatronic
System
Overview

EcoStruxure Machine Expert Twin provides features for visualization, simulation,
and emulation of machines and automation lines throughout the complete
lifecycle. This user guide describes how to convert parts of your physical machine
into digital models that can be made available in EcoStruxure Machine Expert
Twin catalogs for use in projects.

Catalogs function as a form of libraries that provide different objects. You can drag
these objects into the Model view of EcoStruxure Machine Expert Twin to use
them as assemblies in your scene. Catalogs are handled as DLL files. The default
catalogs are extended by the prefix Experior.Catalog, for example Experior.
Catalog.SchneiderElectric.Accessories.dll.

To create customized catalogs of customized mechatronic systems for the
EcoStruxure Machine Expert Twin Builder, the following prerequisites must be
fulfilled:

• An EcoStruxure Machine Expert Twin Developer license is available.
• Microsoft Visual Studio is installed to develop customized catalogs in the C#

programming language.

Steps
Perform the following steps to create a digital model of your mechatronic system:

1. Identify the different kinds of movements that are performed by your
mechatronic system.
Refer to Identifying the Movements of the Machine, page 14.

2. Split the overall CAD file of the mechatronic system into individual
subsystems (using a CAD tool such as Solidworks or PTC Creo) according to
the type of motion that is performed.
To achieve this, identify the parts according to the movement they perform:

• Movement in X direction.
• Movement in Y direction.
• Movement in Z direction.
• Parts that perform other movements, as, for example, rotations.
• Parts of the mechatronic system that are not moving. They form the

ground, the frame itself.
Save each subsystem as a separate *.dae (Collada) file.
Refer to Extracting CAD Files per Axis, page 15.

3. Identify the parent-child relationships that exist between the subsystems,
which are represented by the different *.dae files you created, and
schematize them in a hierarchical concept.
Refer to Creating a Hierarchical Concept of Parent-Child Relations, page 19.

4. Program the catalog in C# using Microsoft Visual Studio.
Refer to Programming in Microsoft Visual Studio, page 22.

5. Create the parent-child relationships by kinematizing the individual CAD
elements to define which parts of the mechatronic system are moving in
relation to one another.
Refer to Programming Relations, page 23.

12 EIO0000005040.00

Creating Customized Catalogs Steps to Create a Digital Model of Your Mechatronic System

Example of a Disk Tracking Machine
The photo displays the Schneider Electric disk tracking machine. It is used as an
example in this user guide to describe the steps that need to be performed to
create a digital model of this physical machine that can be made available in
EcoStruxure Machine Expert Twin catalogs for use in projects.

The screenshot displays the goal of the process. After the steps explained in this
user guide have been performed, the disk tracking machine is available as an
object in an EcoStruxure Machine Expert Twin catalog and can be used in
projects.

EIO0000005040.00 13

Steps to Create a Digital Model of Your Mechatronic System Creating Customized Catalogs

Identifying the Movements of the Machine

Overview
As a first step in creating a digital twin model, understand your mechatronic
system and identify the different kinds of movements that are performed.

Example: Identifying the Movements of the Disk Tracking
Machine

The disk tracking machine consists of the following components:
• Cartesian robot that performs motion in X, Y and Z direction.
• Rotating gripper
• Rotating disk

It thus contains five axes of movement.

Before you proceed with the next step, identify the following:
• Parts of the mechatronic system that belong to the same axis.
• Parent-child relationships that exist between the different axes.

Example of parent-child relationships:

If the... Then the...

X axis of the cartesian robot is moving, Y and Z axes are moved together with the X
axis.

Y axis is moving, X axis is not affected but the Z axis is moved
together with the Y axis.

14 EIO0000005040.00

Creating Customized Catalogs Steps to Create a Digital Model of Your Mechatronic System

Extracting CAD Files per Axis

Overview
As a second step in creating a digital model, split the overall CAD file of the
mechatronic system into individual files according to the movement axis. To edit
the overall CAD file, use a CAD tool such as Solidworks or PTC Creo.

Overall CAD File of the Disk Tracking Machine

In the overall CAD file of the disk tracking machine, identify the parts that belong
to the same axis of movement. Extract the selected parts and save each group to
an individual CAD (Collada) file with the file extension *.dae. For a list of CAD files
that result from this disk tracking machine example, refer to Resulting CAD Files,
page 19.

EIO0000005040.00 15

Steps to Create a Digital Model of Your Mechatronic System Creating Customized Catalogs

CAD File for the Ground
Identify the static components and save them as a separate file, in our example,
Ground.dae.

CAD Files for the Load Holders
Identify the components of the load holders that are not moving. They provide the
space for loads that are not on the rotating disk. Save them as a separate file, in
our example, Holder.dae.

16 EIO0000005040.00

Creating Customized Catalogs Steps to Create a Digital Model of Your Mechatronic System

CAD File for the Rotating Disk
Identify components that are part of the rotating disk and save them as a separate
file, in our example, Disk.dae.

CAD File for the X Axis
Identify the X axis components of the cartesian robot and save them as a separate
file, in our example, Axis1.dae.

EIO0000005040.00 17

Steps to Create a Digital Model of Your Mechatronic System Creating Customized Catalogs

CAD File for the Y Axis
Identify the Y axis components of the cartesian robot and save them as a separate
file, in our example, Axis2.dae.

CAD File for the Z Axis
Identify the Z axis components of the cartesian robot and save them as a separate
file, in our example, Axis3.dae.

18 EIO0000005040.00

Creating Customized Catalogs Steps to Create a Digital Model of Your Mechatronic System

Resulting CAD Files
In our example, we have created six individual CAD files. One for the ground and
one for the load holders that are not moving and four for different axes of
movement:

• Ground.dae
• Holder.dae
• Disk.dae
• Axis1.dae (of the cartesian portal)
• Axis2.dae (of the cartesian portal)
• Axis3.dae (of the cartesian portal)

To see how the CAD files are implemented in the programming code, refer to
DiskTracking.cs, page 26.

Creating a Hierarchical Concept of Parent-Child Relations

Overview
The parent-child relationships that exist in your mechatronic system between the
different axes of movement are reflected in EcoStruxure Machine Expert Twin by
coordinate systems. Use a coordinate system as a starting point that forms the
ground, the frame itself, and assign one coordinate system as child. Proceed with
adding further coordinate systems by creating more parent-child relationships.

Before you start programming your digital model in C#, create a hierarchical
concept of the parent-child relationships representing your mechatronic system.

Hierarchy of the Disk Tracking Machine
The five axes of movement that have been identified for the disk tracking machine
can be represented in the following hierarchy using coordinate systems for
creating parent-child relations between the CAD files representing the
components for the different directions of movement:

EIO0000005040.00 19

Steps to Create a Digital Model of Your Mechatronic System Creating Customized Catalogs

Catalog Programming in C#
Overview

This chapter lists the prerequisites and the actions that need to be performed. For
the programming code of the disk tracking machine example, refer to the
Appendix: Programming Code, page 26.

Prerequisites
For programming customized catalogs in C# programming language that
represent your mechatronic system, the following prerequisites must be fulfilled:

• An EcoStruxure Machine Expert Twin Developer license must be available. It
provides access to the EcoStruxure Machine Expert Twin suite and the
underlying .NET framework. For developing catalogs in Microsoft Visual
Studio, a C# project template is provided.

• Microsoft Visual Studio must be installed.

Catalog Template Configuration

Overview
Use the Machine Expert Twin Catalog Template that is provided with the
EcoStruxure Machine Expert Twin installation, for programming customized
catalogs.

Installing the Machine Expert Twin Catalog Template for Microsoft
Visual Studio

Copy the Machine Expert Twin Catalog Template.zip file from the subfolder
Templates of the EcoStruxure Machine Expert Twin installation folder and add it to
the project templates of Microsoft Visual Studio by pasting it in the Users
\Documents path in the following folder:

[...]\Documents\Visual Studio XXXX\Templates\Project Templates\Visual C#

20 EIO0000005040.00

Creating Customized Catalogs Catalog Programming in C#

Project Configuration in Microsoft Visual Studio
To configure a new project in Microsoft Visual Studio for programming your
catalog, proceed as follows:

Step Action

1 Start Microsoft Visual Studio and execute the command Create a new project.

2 In the Recent project templates step, browse for the Machine Expert Twin Catalog
Template that you have saved to the Microsoft Visual Studio Templates folder as
described in Installing the Machine Expert Twin Catalog Template for Microsoft Visual
Studio, page 20.

Select it and click Next.

3 In the Configure your new project step:
• Enter a Project name that must be extended by the prefix Experior.Catalog, for

example Experior.Catalog.
• Browse to the Location where you want to save the project.
• Click the Create button.

4 In the Solution Explorer view, right-click the Experior.Catalog.DiskTrackingModel
project node and execute the command Properties from the contextual menu.

5 Select the Application tab of the project properties and perform the following actions:
• Copy the content of the field Default namespace that contains the name you

entered as Project name in step 3 (Experior.Catalog.DiskTrackingModel in this
example) and paste it into the field Assembly name.
As this is the name that will be displayed in EcoStruxure Machine Expert Twin for
the catalog, page 25, ensure to replace the default name by a unique name.

• From the Target framework: list, select the entry .NET Framework 4.8.1.

6 Select the Build tab of the project properties.

In the Output section, click the Browse... button to browse to the Output path:

C:\Program Files\Schneider Electric\EcoStruxure Machine Expert Twin

7 Select the Debug tab of the project properties.

In the Start action section, click the Browse... button of the Start external program
and browse to the following path:

C:\Program Files\Schneider Electric\EcoStruxure Machine Expert Twin
\MachineExpertTwin.exe

Importing CAD Files to Microsoft Visual Studio

Overview
To make the individual CAD files that you have created from your mechatronic
system as described in Extracting CAD Files per Axis, page 15 available in
Microsoft Visual Studio, proceed as follows:

Step Action

1 In the Solution Explorer, right-click the Mesh folder and execute the command Add >
Existing Item... from the contextual menu.

2 Select the option All Files *.* from the list on the left-hand side to display the Collada
files with the file extension *.dae and browse to the folder where you stored the CAD
files that you have created of your mechatronic system.

3 Select the *.dae file or files you want to import from this folder and click the Add button.

Result: The *.dae files you selected are displayed as subitems of the Mesh folder in the
Solution Explorer.

4 Select the *.dae file or files in the Solution Explorer and set the property Advanced >
Build Action that is displayed in the lower part of the Solution Explorer to Embedded
Resource.

EIO0000005040.00 21

Catalog Programming in C# Creating Customized Catalogs

Programming in Microsoft Visual Studio

Overview
It is a good practice to structure the programming code in the following regions:

• Fields

Use this region for variable declarations.
• Constructor

Use this region to construct the assembly and to add CAD files (meshes).
• Public Properties

Use this region to configure the properties that are displayed in the
Properties view of EcoStruxure Machine Expert Twin (for further information,
refer to the EcoStruxure Machine Expert Twin Getting Started User Guide).

• Public Methods

Use this region to configure the methods that are accessible both inside and
outside the scope of your class.

• Private Methods

Use this region to configure the methods that can only be accessed inside the
scope of your class.

Variable Declarations
As a first programming step in Microsoft Visual Studio, declare variables for the
CAD files, the coordinate systems and the loads in section:
public class MyAssembly : Assembly

• Variables for CAD files:
For each CAD file you have imported to the Mesh folder as described in
Importing CAD Files to Microsoft Visual Studio, page 21, declare a variable
under the data type:
private Experior.Core.Parts.Model

• Variables for coordinate systems:
For each coordinate system you have identified in the step Creating a
Hierarchical Concept of Parent-Child Relations, page 19, declare a variable
under the data type:
private Experior.Core.Assemblies.CoordinateSystem

It is a good practice to use the same names as for the CAD files extended by
a suffix such as _cs.

• Variables for loads:
For each type of load (for example, boxes or cylinders), declare a variable
under the data type:
Experior.Core.Loads.Load

To see the implementation in the programming code, refer to DiskTracking.cs,
page 26.

22 EIO0000005040.00

Creating Customized Catalogs Catalog Programming in C#

Programming Relations

Overview
Program the relationships between variables and coordinate systems that have
been identified in the step Creating a Hierarchical Concept of Parent-Child
Relations, page 19.

To see the implementation in the programming code, refer to DiskTracking.cs,
page 26.

Adding a CAD File as Sub Component to a Coordinate System
In the following example code, the CAD file Ground.dae is added as sub
component to the ground coordinate system ground_cs that corresponds to the
relationship marked in the section of the Hierarchy of the Disk Tracking Machine,
page 19.

Example code:
ground_cs.Add(ground);

As a second example, the relationship between the axis1_cs and the CAD file
Axis1.dae is created:

Example code:
axis1_cs.Add(axis1);

Proceed like this for all relationships between variables and coordinate systems
that have been identified in the step Creating a Hierarchical Concept of Parent-
Child Relations, page 19.

EIO0000005040.00 23

Catalog Programming in C# Creating Customized Catalogs

Adding a Coordinate System as Sub Component of a Coordinate
System

In the following example code, the coordinate system axis1_cs is added as sub
component to the ground coordinate system ground_cs that corresponds to the
relationship marked in the section of the Hierarchy of the Disk Tracking Machine,
page 19.

Example code:
ground_cs.AddSubSystem(axis1_cs, new System.Numerics.Vector3
(0,0,0));;

Use AddSubSystem and add the name of the second coordinate system. The 3-
dimensional vector datatype Vector3 is a mandatory parameter to configure an
offset between the two coordinate systems. To define no offset, enter (0,0,0) for
the x, y and z values.

Proceed like this for all relationships between two coordinate systems that have
been identified in the step Creating a Hierarchical Concept of Parent-Child
Relations, page 19.

For the programming example of the disk tracking machine, refer to the Appendix:
Programming Code, page 26.

Building and Debugging the Catalog

Overview
After you have declared and configured the variables and programmed the
relations, you can build the catalog and start EcoStruxure Machine Expert Twin in
debugging mode. The debugging mode allows you to perform modifications in
Microsoft Visual Studio and verifying the effects in EcoStruxure Machine Expert
Twin. As a prerequisite, an EcoStruxure Machine Expert Twin Developer license
must be available.

24 EIO0000005040.00

Creating Customized Catalogs Catalog Programming in C#

Building the Catalog Project
To build the project, proceed as follows:

Step Action

1 Click the Start button in the toolbar of Microsoft Visual Studio.

This leads to two results:
• A new catalog DLL file is created in the EcoStruxure Machine Expert Twin

installation folder. The file is named according to the string you entered for the
parameters Project name and Default namespace in Project Configuration in
Microsoft Visual Studio, page 21.
In our example: Experior.Catalog.DiskTrackingModel.dll

• EcoStruxure Machine Expert Twin starts and the Select Catalog(s) dialog box
provides the new catalog Experior.Catalog.DiskTrackingModel for selection.

2 Select the check box of theExperior.Catalog.DiskTrackingModel in the Select Catalog
(s) dialog box and click the OK button to continue starting EcoStruxure Machine Expert
Twin in debug mode and providing this new catalog in the Catalogs view.

Result: The model of the disk tracking machine is provided as an object of the new
catalog.

3 To use it in your EcoStruxure Machine Expert Twin project, drag the object from the
catalog and drop it to the scene.

For further information on the Catalogs view, refer to the EcoStruxure Machine
Expert Twin Getting Started User Guide.

Debugging the Catalog
As EcoStruxure Machine Expert Twin has been started in debug mode, you can
verify the content of the catalog in EcoStruxure Machine Expert Twin and return to
Microsoft Visual Studio to perform modifications. Whenever you click the Start or
the Hot Reload button in Microsoft Visual Studio, the modifications performed in
Microsoft Visual Studio will become available in EcoStruxure Machine Expert Twin
for you to verify.

EIO0000005040.00 25

Catalog Programming in C# Creating Customized Catalogs

Appendix: Programming Code
This appendix provides the programming code of the disk tracking machine in
three separate code files:

• DiskTracking.cs, page 26
The main class DiskTracking is defined as a partial class and is used in
the Load.cs and Motion.cs code files.

• Load.cs, page 34
Contains the C# script for handling loads, that are the methods to create and
position loads.

• Motion.cs, page 37
Contains the methods that handle the motion of the assemblies based on
controller signals.

DiskTracking.cs

Overview
In the DiskTracking.cs, the main class DiskTracking is defined as a partial
class. The DiskTracking partial class is then used in the Load.cs and Motion.cs
code files.

Code Example
using Experior.Core.Assemblies;
using Experior.Core.Communication.PLC;
using Experior.Core.Mathematics;
using Experior.Core.Parts;
using Experior.Core.Parts.Sensors;
using Experior.Core.Properties;
using Experior.Interfaces;
using System;
using System.ComponentModel;
using System.Numerics;
using System.Windows.Media;
using System.Xml.Serialization;
namespace Experior.Catalog.SchneiderElectric.DiskTracking.Assemblies
{

public partial class DiskTracking : Assembly
{

#region Fields
private DiskTrackingInfo info;

//Declare the mesh variables
private Experior.Core.Parts.Model ground, axis1, axis2, axis3, axis4,

disk, holder, dummyDisk, dummyHolder;

//private Experior.Core.Parts.Cylinder dummyDisk;

//Declare coordinate system variables
private Experior.Core.Assemblies.CoordinateSystem ground_cs, axis1_cs,

axis2_cs, axis3_cs, axis4_cs, disk_cs;

// Declare load variables
Experior.Core.Loads.Load star, square, triangle, hexagon, oval,

parallelogram, load_1;

26 EIO0000005040.00

Creating Customized Catalogs Appendix: Programming Code

// Declare the gripper variables
private Experior.Core.Parts.Sensors.Box gripper;
private bool GripperActive = false;

#region Global Variables
// offset values (zero positions with respect to coordinates)
// Values calculated for the CAD model
public double x_offset = 0.265f;
public double y_offset = 0.053f;
public double z_offset = 0.23009f;
public double c_offset = 0.0f;
public double t_offset = 8.2f;

public double targetPositionX = 0;
private double targetPositionY = 0;
private double targetPositionZ = 0;
private double targetPositionC = 0;
public double targetPositionT = 0;
#endregion

#endregion

#region Constructor
public DiskTracking(DiskTrackingInfo info): base(info)
{

this.info = info;

// Define the mesh variables and add the meshes(machine parts) to the
environment

ground = new Model(Common.EmbeddedResourceLoader.Get("Ground.dae"));
Add(ground);

axis1 = new Model(Common.EmbeddedResourceLoader.Get("Axis1.dae"));
Add(axis1);

axis2 = new Model(Common.EmbeddedResourceLoader.Get("Axis2.dae"));
Add(axis2);

axis3 = new Model(Common.EmbeddedResourceLoader.Get("Axis3.dae"));
Add(axis3);

axis4 = new Model(Common.EmbeddedResourceLoader.Get("Gripper.dae"));
Add(axis4);

disk = new Model(Common.EmbeddedResourceLoader.Get("Disk.dae")) {
Color = Colors.DarkGray, Rigid = true };// disk is set to be rigid, to use the
attach properts of loads

Add(disk);
disk.Visible = false;

dummyDisk = new Model(Common.EmbeddedResourceLoader.Get("Disk.dae")) {
Color =Colors.DarkGray, Rigid = false };//new Experior.Core.Parts.Cylinder(Color =
Colors.Red, 0.01f, 0.25f, 1000) { Rigid = true };

Add(dummyDisk);
dummyDisk.Visible = true;
//dummyDisk.Color = Colors.;

holder = new Model(Common.EmbeddedResourceLoader.Get("Holder.dae")) {
Rigid = true }; // holder is set to be rigid, to use the attach properts of loads

Add(holder);
holder.Visible = false;

dummyHolder = new Model(Common.EmbeddedResourceLoader.Get("Holder.
dae")) { Rigid = false }; // holder is set to be rigid, to use the attach properts
of loads

Add(dummyHolder);

EIO0000005040.00 27

Appendix: Programming Code Creating Customized Catalogs

dummyHolder.Visible = true;

// creating coordinate systems
ground_cs = new CoordinateSystem(); // define the coordinate

system
Add(ground_cs); // ADD Coordinate system to

the scene
ground_cs.Add(ground); // add the ground mesh to the

coordinate system

axis1_cs = new CoordinateSystem();
Add(axis1_cs); // ADD Coordinate system to

the scene

axis2_cs = new CoordinateSystem();
Add(axis2_cs); // ADD Coordinate system to

the scene

axis3_cs = new CoordinateSystem();
Add(axis3_cs); // ADD Coordinate system to

the scene

axis4_cs = new CoordinateSystem();
Add(axis4_cs); // ADD Coordinate system to

the scene

disk_cs = new CoordinateSystem();
Add(disk_cs); // ADD Coordinate system to

the scene

// set visibility of cs
ground_cs.VisibleAxes = CoordinateSystem.VisibleAxesTypes.NotVisible;
axis1_cs.VisibleAxes = CoordinateSystem.VisibleAxesTypes.NotVisible;
axis2_cs.VisibleAxes = CoordinateSystem.VisibleAxesTypes.NotVisible;
axis3_cs.VisibleAxes = CoordinateSystem.VisibleAxesTypes.NotVisible;
axis4_cs.VisibleAxes = CoordinateSystem.VisibleAxesTypes.NotVisible;
disk_cs.VisibleAxes = CoordinateSystem.VisibleAxesTypes.NotVisible;

// Creating the parent child relationship
// adding one coordinate system as subsystem of another one
ground_cs.AddSubSystem(axis1_cs, new Vector3(0.0f, 0.0f, 0.0f));

// axis1_cs is added as a subsystem of ground_cs
axis1_cs.AddSubSystem(axis2_cs, new Vector3(0.0f, 0.0f, 0.0f));

// axis2_cs is added as a subsystem of axis1_cs
axis2_cs.AddSubSystem(axis3_cs, new Vector3(0.0f, 0.0f, 0.0f));
axis3_cs.AddSubSystem(axis4_cs, new Vector3(0.0f, 0.0f, 0.0f));
ground_cs.AddSubSystem(disk_cs, new Vector3(0.0f, 0.0f, 0.0f));

// Linking the meshes to the repective coordinate systems
ground_cs.Add(ground);
ground_cs.Add(dummyHolder, new Vector3(0.0f,0.0f, 0.010f));
ground_cs.Add(holder, new Vector3(0.0f, 0.0f, 0.005f));

axis1_cs.Add(axis1);
axis2_cs.Add(axis2);
axis3_cs.Add(axis3);

axis4_cs.Add(axis4, new Vector3(0.0f, -0.05589f, 0.07f)); //
offset calculated from CAD model

axis4.LocalRoll = -(float)Math.PI / 2;
disk_cs.Add(dummyDisk, new Vector3(0.0f, 0.0f, -0.025f));
disk_cs.Add(disk, new Vector3(0.0f,0.0f, -0.037f)) ;

// Creating the gripper and adding it to the scene
gripper = new Experior.Core.Parts.Sensors.Box(Colors.LightGray, 0.05f,

0.05f, 0.05f) { Collision = Collisions.Loads }; // old radius 0.021 0.031

28 EIO0000005040.00

Creating Customized Catalogs Appendix: Programming Code

Add(gripper);
axis4_cs.Add(gripper, new Vector3(0, -0.05589f, 0.0305f)); //

offset calculated from CAD model
gripper.LocalPitch = -(float)Math.PI / 2;
gripper.Visible = false;

#region PLC Output Variables

if (info.inputposition_x == null)
info.inputposition_x = new Input() { DataSize = DataSize.LREAL,

Description = "Reference Position X",SymbolName = "Lin X" };

if (info.inputposition_y == null)
info.inputposition_y = new Input() { DataSize = DataSize.LREAL,

Description = "Reference Position Y", SymbolName = "Lin Y" };

if (info.inputposition_z == null)
info.inputposition_z = new Input() { DataSize = DataSize.LREAL,

Description = "Reference Position Z", SymbolName = "Lin Z" };

if (info.inputposition_c == null)
info.inputposition_c = new Input() { DataSize = DataSize.LREAL,

Description = "Rotation of Gripper around Z axis", SymbolName = "Rot C" };

if (info.inputposition_t == null)
info.inputposition_t = new Input() { DataSize = DataSize.LREAL,

Description = "Rotation of Disk", SymbolName = "Rot T" };

if (info.vaccum == null)
info.vaccum = new Input() { DataSize = DataSize.BOOL, Description

= "Gripper Vaccum", SymbolName = "Vaccum" };

Add(info.inputposition_x);
Add(info.inputposition_y);
Add(info.inputposition_z);
Add(info.inputposition_c);
Add(info.inputposition_t);
Add(info.vaccum);

// subscribe to the event to detect change of inputs
info.inputposition_x.OnReceived += InputPositionX_OnReceived;
info.inputposition_y.OnReceived += InputPositionY_OnReceived;
info.inputposition_z.OnReceived += InputPositionZ_OnReceived;

info.inputposition_c.OnReceived += InputPositionC_OnReceived;
info.inputposition_t.OnReceived += InputPositionT_OnReceived;

info.vaccum.On += Vaccum_On;
info.vaccum.Off += Vaccum_On;

#endregion

#region Delegate functions
// subscribe to the event; collision of loads with gripper(loads

entering gripper)
gripper.OnEnter += Magnet_OnEnter;

gripper.OnLeave += Gripper_OnLeave;

// subscribe to the event; collision of loads with disk
disk.OnContact += Disk_OnContact;

//
holder.OnContact += Holder_OnContact;

#endregion
// Reset used for initializing the model

EIO0000005040.00 29

Appendix: Programming Code Creating Customized Catalogs

Reset();
}

#endregion

#region PLC Output Signals
[Category("PLC Output Signals")]
[DisplayName(@"X Position")]
[PropertyOrder(0)]
public Input InputPosition_X
{

get => info.inputposition_x;
set => info.inputposition_x = value;

}

[Category("PLC Output Signals")]
[DisplayName(@"Y Position")]
[PropertyOrder(1)]
public Input InputPosition_Y
{

get => info.inputposition_y;
set => info.inputposition_y = value;

}

[Category("PLC Output Signals")]
[DisplayName(@"Z Position")]
[PropertyOrder(2)]
public Input InputPosition_Z
{

get => info.inputposition_z;
set => info.inputposition_z = value;

}

[Category("PLC Output Signals")]
[DisplayName(@"C Position")]
[PropertyOrder(3)]
public Input InputPosition_C
{

get => info.inputposition_c;
set => info.inputposition_c = value;

}

[Category("PLC Output Signals")]
[DisplayName(@"T Position")]
[PropertyOrder(4)]
public Input InputPosition_T
{

get => info.inputposition_t;
set => info.inputposition_t = value;

}

[Category("PLC Output Signals")]
[DisplayName(@"Gripper Vaccum")]
[PropertyOrder(4)]
public Input Vaccum
{

get => info.vaccum;
set => info.vaccum = value;

}

#endregion

#region Public Properties

[Browsable(false)]
public override float Yaw { get => base.Yaw; set => base.Yaw = 0; }

[Browsable(false)]

30 EIO0000005040.00

Creating Customized Catalogs Appendix: Programming Code

public override float Pitch { get => base.Pitch; set => base.Pitch = 0; }

[Browsable(false)]
public override float Roll { get => base.Roll; set => base.Roll = 0; }

#endregion

#region Public Methods

public override void Step(float deltatime)
{

base.Step(deltatime);

}
public override void Reset()
{

Experior.Core.Environment.InvokeIfRequired(() =>
{

axis1_cs.LocalPosition = new Vector3(0, (float)x_offset, 0);
axis2_cs.LocalPosition = new Vector3((float)y_offset, 0, 0);
axis3_cs.LocalPosition = new Vector3(0, 0, (float)z_offset);

gripper.LocalYaw = 0;
//disk.LocalYaw = 0;

disk.LocalYaw = (float)t_offset;
dummyDisk.LocalYaw = disk.LocalYaw;

targetPositionX = 0;
targetPositionY = 0;
targetPositionZ = 0;
targetPositionC = 0;
targetPositionT = 0;

base.Reset();

// insert the loads back into the scene
// done by invoking the function InsertLoad(), from the partial

class Load.cs
Experior.Core.Environment.Invoke(InsertLoad);

});
}
public override void Dispose()
{

// unsubscribe from the events on deleting the model
info.inputposition_x.OnReceived -= InputPositionX_OnReceived;
info.inputposition_y.OnReceived -= InputPositionY_OnReceived;
info.inputposition_z.OnReceived -= InputPositionZ_OnReceived;

info.inputposition_c.OnReceived -= InputPositionC_OnReceived;
info.inputposition_t.OnReceived -= InputPositionT_OnReceived;

info.vaccum.On -= Vaccum_On;
info.vaccum.Off -= Vaccum_On;

gripper.OnEnter -= Magnet_OnEnter;

gripper.OnLeave -= Gripper_OnLeave;

disk.OnContact -= Disk_OnContact;

holder.OnContact -= Holder_OnContact;

base.Dispose();

// removing all the loads from the scene on deleting the machine

EIO0000005040.00 31

Appendix: Programming Code Creating Customized Catalogs

// done by invoking the function DisposeLoads(), from the partial
class Load.cs

Experior.Core.Environment.Invoke(DisposeLoads);
}

public override string Category { get; } = "Machine";

public override ImageSource Image { get; } = Common.EmbeddedImageLoader?.
Get("machine");

#endregion

#region Private Methods
private void InputPositionX_OnReceived(Input sender, object value)
{

// Position unit received: mm
targetPositionX = (float)x_offset - (System.Convert.ToDouble

(InputPosition_X.Value)) / 1000;

Experior.Core.Environment.Invoke(Move_Linear_X);
}
private void InputPositionY_OnReceived(Input sender, object value)
{

// Position unit received: mm
targetPositionY = (float)y_offset - (System.Convert.ToDouble

(InputPosition_Y.Value)) / 1000;

Experior.Core.Environment.Invoke(Move_Linear_Y);
}
private void InputPositionZ_OnReceived(Input sender, object value)
{

// Position unit received: mm
targetPositionZ = (float)z_offset - (System.Convert.ToDouble

(InputPosition_Z.Value)) / 1000;

Experior.Core.Environment.Invoke(Move_Linear_Z);
}

private void InputPositionC_OnReceived(Input sender, object value)
{

targetPositionC = (float)c_offset - (System.Convert.ToDouble
(InputPosition_C.Value));

Experior.Core.Environment.Invoke(Move_C);
}

private void InputPositionT_OnReceived(Input sender, object value)
{

targetPositionT = (float)t_offset - (System.Convert.ToDouble
(InputPosition_T.Value));

Experior.Core.Environment.Invoke(Move_T);
}

private void Vaccum_On(Input sender)
{

if (Vaccum.Active)
{

GripperActive = true;
ActivateGripper(load_1);

}
else
{

GripperActive = false;
// checking if any loads are attached to the gripper
if (gripper.Attached.Count >= 1)
{

// identifying the first load attached to the gripper

32 EIO0000005040.00

Creating Customized Catalogs Appendix: Programming Code

var load = gripper.Attached[0];
gripper.UnAttach();

}
}

}
private void Magnet_OnEnter(Sensor sensor, object trigger)
{

load_1 = trigger as Experior.Core.Loads.Load;
if (GripperActive)
{

ActivateGripper(load_1);
}
else

return;
}

private void ActivateGripper(Experior.Core.Loads.Load load)
{

if (GripperActive)
gripper.Attach(load);

if (gripper.Attached.Count >= 1)
load_1 = null;

}
private void Gripper_OnLeave(Sensor sensor, object trigger)
{

load_1 = null;
}

private bool Disk_OnContact(Static sender, Core.Loads.Load load)
{

if (sender.Attached.Contains(load))
return false;

else
{

AttachLoad_Disk(load);
return true;

}
}
private bool Holder_OnContact(Static sender, Core.Loads.Load load)
{

if (sender.Attached.Contains(load))
return false;

else
{

AttachLoad_Holder(load);
return true;

}
}

#endregion
}

[Serializable, XmlInclude(typeof(DiskTrackingInfo)), XmlType(TypeName =
"Experior.Catalog.SchneiderElectric.DiskTracking.Assemblies.DiskTrackingInfo")]

public class DiskTrackingInfo : Experior.Core.Assemblies.AssemblyInfo
{

public double xpos = 0;
public double ypos = 0;
public double zpos = 0;

public Input inputposition_x = null;
public Input inputposition_y = null;
public Input inputposition_z = null;
public Input inputposition_c = null;
public Input inputposition_t = null;
public Input vaccum = null;

EIO0000005040.00 33

Appendix: Programming Code Creating Customized Catalogs

}
}

Load.cs

Overview
The Load.cs contains the C# script for handling loads, that are the methods to
create and position loads.

Code Example
using Experior.Core.Mathematics;
using Experior.Interfaces;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;
using System.Text;
using System.Threading.Tasks;
namespace Experior.Catalog.SchneiderElectric.DiskTracking.Assemblies
{

public partial class DiskTracking
{

#region Load functions
public void InsertLoad()
{

// Defining/ creating the load from mesh
star = Experior.Core.Loads.Load.Create(Common.EmbeddedResourceLoader.

Get("Star.dae"));
star.Rigid = Rigids.Box;

square = Experior.Core.Loads.Load.Create(Common.
EmbeddedResourceLoader.Get("Square.dae"));

square.Rigid = Rigids.Box;

parallelogram = Experior.Core.Loads.Load.Create(Common.
EmbeddedResourceLoader.Get("Parallelogram.dae"));

parallelogram.Rigid = Rigids.Box;

hexagon = Experior.Core.Loads.Load.Create(Common.
EmbeddedResourceLoader.Get("Hexagon.dae"));

hexagon.Rigid = Rigids.Box;

triangle = Experior.Core.Loads.Load.Create(Common.
EmbeddedResourceLoader.Get("Triangle.dae"));

triangle.Rigid = Rigids.Box;

oval = Experior.Core.Loads.Load.Create(Common.EmbeddedResourceLoader.
Get("Oval.dae"));

oval.Rigid = Rigids.Box;

PositionStar();
PositionSquare();
PositionParallelogram();
PositionHexagon();
PositionTriangle();
PositionOval();

//PositionStar_Disk();
//PositionSquare_Disk();
//PositionParallelogram_Disk();

34 EIO0000005040.00

Creating Customized Catalogs Appendix: Programming Code

//PositionHexagon_Disk();
//PositionTriangle_Disk();
//PositionOval_Disk();

}
public void DisposeLoads()
{

// Removing loads from the scene
star.Dispose();
square.Dispose();
parallelogram.Dispose();
triangle.Dispose();
oval.Dispose();
hexagon.Dispose();

}

#region Attach loads to holder
public void PositionStar()
{

Experior.Core.Mathematics.Trigonometry.LocalToGobal(new Vector3
(-0.21045f, -0.22428f, -0.0425f), Matrix4x4.Identity, holder.Position, holder.
Orientation, out var temp_pos, out var temp_ori);

star.Position = temp_pos;
star.Orientation = Matrix4x4.CreateFromYawPitchRoll(Yaw , Pitch , Roll

+ Trigonometry.Angle2Rad(30));
holder.Attach(star);

}
public void PositionSquare()
{

Experior.Core.Mathematics.Trigonometry.LocalToGobal(new Vector3
(-0.2106f, -0.30539f, -0.0425f), Matrix4x4.Identity, holder.Position, holder.
Orientation, out var temp_pos, out var temp_ori);

square.Position = temp_pos;
square.Orientation = Matrix4x4.CreateFromYawPitchRoll(Yaw , Pitch,

Roll);
holder.Attach(square);

}
public void PositionParallelogram()
{

Experior.Core.Mathematics.Trigonometry.LocalToGobal(new Vector3
(-0.12972f, -0.30539f, -0.0425f), Matrix4x4.Identity, holder.Position, holder.
Orientation, out var temp_pos, out var temp_ori);

parallelogram.Position = temp_pos;
parallelogram.Orientation = Matrix4x4.CreateFromYawPitchRoll(Yaw ,

Pitch, Roll + Trigonometry.Angle2Rad(90));
holder.Attach(parallelogram);

}
public void PositionHexagon()
{

Experior.Core.Mathematics.Trigonometry.LocalToGobal(new Vector3
(0.1296f, -0.30518f, -0.0425f), Matrix4x4.Identity, holder.Position, holder.
Orientation, out var temp_pos, out var temp_ori);

hexagon.Position = temp_pos;
hexagon.Orientation = Matrix4x4.CreateFromYawPitchRoll(Yaw , Pitch,

Roll + Trigonometry.Angle2Rad(30));
holder.Attach(hexagon);

}
public void PositionTriangle()
{

Experior.Core.Mathematics.Trigonometry.LocalToGobal(new Vector3
(0.20923f, -0.22539f, -0.0425f), Matrix4x4.Identity, holder.Position, holder.
Orientation, out var temp_pos, out var temp_ori);

triangle.Position = temp_pos;
triangle.Orientation = Matrix4x4.CreateFromYawPitchRoll(Yaw , Pitch,

Roll + Trigonometry.Angle2Rad(90));
holder.Attach(triangle);

}
public void PositionOval()
{

EIO0000005040.00 35

Appendix: Programming Code Creating Customized Catalogs

Experior.Core.Mathematics.Trigonometry.LocalToGobal(new Vector3
(0.2101f, -0.30489f, -0.0425f), Matrix4x4.Identity, holder.Position, holder.
Orientation, out var temp_pos, out var temp_ori);

oval.Position = temp_pos;
oval.Orientation = Matrix4x4.CreateFromYawPitchRoll(Yaw , Pitch, Roll

+ Trigonometry.Angle2Rad(90));
holder.Attach(oval);

}
public void AttachLoad_Holder(Core.Loads.Load load)
{

if (load == null)
return;

else if (load == star)
PositionStar();

else if (load == square)
PositionSquare();

else if (load == parallelogram)
PositionParallelogram();

else if (load == hexagon)
PositionHexagon();

else if (load == triangle)
PositionTriangle();

else if (load == oval)
PositionOval();

}

#endregion

#region Attach Load to Disk
public void PositionStar_Disk()
{

Experior.Core.Mathematics.Trigonometry.LocalToGobal(new Vector3
(0.0684f, -0.18794f, 0.0325f), Matrix4x4.Identity, disk.Position, disk.
Orientation, out var temp_pos, out var temp_ori);

star.Position = temp_pos;
star.Orientation = temp_ori;
star.Yaw = star.Yaw + Trigonometry.Angle2Rad(40.0f);
disk.Attach(star);

}
public void PositionSquare_Disk()
{

Experior.Core.Mathematics.Trigonometry.LocalToGobal(new Vector3
(0.19696f, -0.03473f, 0.0325f), Matrix4x4.Identity, disk.Position, disk.
Orientation, out var temp_pos, out var temp_ori);

square.Position = temp_pos;
square.Orientation = temp_ori;
square.Yaw = square.Yaw + Trigonometry.Angle2Rad(10.0f);
disk.Attach(square);

}
public void PositionParallelogram_Disk()
{

Experior.Core.Mathematics.Trigonometry.LocalToGobal(new Vector3
(-0.12856f, -0.15321f, 0.0325f), Matrix4x4.Identity, disk.Position, disk.
Orientation, out var temp_pos, out var temp_ori);

parallelogram.Position = temp_pos;
parallelogram.Orientation = temp_ori;
parallelogram.Yaw -= Trigonometry.Angle2Rad(20.0f);
disk.Attach(parallelogram);

}
public void PositionHexagon_Disk()
{

Experior.Core.Mathematics.Trigonometry.LocalToGobal(new Vector3
(0.12856f, 0.15321f, 0.0325f), Matrix4x4.Identity, disk.Position, disk.
Orientation, out var temp_pos, out var temp_ori);

hexagon.Position = temp_pos;
hexagon.Orientation = temp_ori;
hexagon.Yaw = hexagon.Yaw + Trigonometry.Angle2Rad(45.0f);
disk.Attach(hexagon);

36 EIO0000005040.00

Creating Customized Catalogs Appendix: Programming Code

}
public void PositionTriangle_Disk()
{

Experior.Core.Mathematics.Trigonometry.LocalToGobal(new Vector3
(-0.0684f, 0.18794f, 0.0325f), Matrix4x4.Identity, disk.Position, disk.
Orientation, out var temp_pos, out var temp_ori);

triangle.Position = temp_pos;
triangle.Orientation = temp_ori;
triangle.Yaw = triangle.Yaw + Trigonometry.Angle2Rad(40.0f);
disk.Attach(triangle);

}
public void PositionOval_Disk()
{

Experior.Core.Mathematics.Trigonometry.LocalToGobal(new Vector3
(-0.19696f, 0.03473f, 0.0325f), Matrix4x4.Identity, disk.Position, disk.
Orientation, out var temp_pos, out var temp_ori);

oval.Position = temp_pos;
oval.Orientation = temp_ori;
oval.Yaw = oval.Yaw + Trigonometry.Angle2Rad(90.0f);
disk.Attach(oval);

}
public void AttachLoad_Disk(Core.Loads.Load load)
{

if (load == null)
return;

else if (load == star)
PositionStar_Disk();

else if (load == square)
PositionSquare_Disk();

else if (load == parallelogram)
PositionParallelogram_Disk();

else if (load == hexagon)
PositionHexagon_Disk();

else if (load == triangle)
PositionTriangle_Disk();

else if (load == oval)
PositionOval_Disk();

}

#endregion

#endregion
}

}

Motion.cs

Overview
The Motion.cs contains the methods that handle the motion of the assemblies
based on controller signals.

Code Example
using Experior.Core.Mathematics;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;
using System.Text;
using System.Threading.Tasks;
namespace Experior.Catalog.SchneiderElectric.DiskTracking.Assemblies

EIO0000005040.00 37

Appendix: Programming Code Creating Customized Catalogs

{
public partial class DiskTracking
{

#region Functions
private void Move_Linear_X()
{

axis1_cs.LocalPosition = new Vector3(0, (float)targetPositionX, 0);
}
private void Move_Linear_Y()
{

axis2_cs.LocalPosition = new Vector3((float)targetPositionY, 0, 0);
}
private void Move_Linear_Z()
{

axis3_cs.LocalPosition = new Vector3(0, 0, (float)targetPositionZ);
}
private void Move_C()
{

gripper.LocalYaw = Trigonometry.Angle2Rad((float)targetPositionC);
}
private void Move_T()
{

disk.LocalYaw = Trigonometry.Angle2Rad((float)targetPositionT);
dummyDisk.LocalYaw = disk.LocalYaw;

}

#endregion

}
}

38 EIO0000005040.00

Creating Customized Catalogs Appendix: Programming Code

Creating Customized Catalogs

Glossary
D
digital twin:

A digital twin refers to a virtual representation or digital replica of a physical
object, system, or process. It is a digital counterpart that simulates the behavior,
characteristics, and performance of its physical counterpart in real-time or
historical contexts. The concept of a digital twin allows for the integration of the
physical and digital worlds, enabling organizations to monitor, analyze, and
optimize the performance of their assets or processes.

EcoStruxure Machine Expert Twin provides features for visualization, simulation,
and emulation of machines and automation lines throughout the complete
lifecycle.

E
emulation:

Based on the ISO 24765-2017 International Standard - Systems and software
engineering--Vocabulary, emulation is defined as the use of a data processing
system to imitate another data processing system, so that the imitating system
accepts the same data, executes the same programs, and achieves the same
results as the imitated system.

M
Model view: In EcoStruxure Machine Expert Twin, the Model view provides the
graphical representation of the scene.

P
physical simulation: The physical simulation is a software library that is designed
to simulate and model physical systems in a computer-generated environment. It
is used to create realistic and dynamic animations and simulations of objects,
environments, and interactions between them. In EcoStruxure Machine Expert
Twin the physical simulation uses mathematical algorithms to simulate physical
phenomena, such as gravity, friction, and collision detection.

project: An EcoStruxure Machine Expert Twin project file is saved with the
extension *.experior. It contains the information about assemblies, connections,
loads, settings.

S
scene: In the EcoStruxure Machine Expert Twin context, a scene is a
representation of a set of assemblies interacting with loads.

simulation:

Based on the ISO 24765-2017 International Standard - Systems and software
engineering--Vocabulary, simulation describes two concepts:

• A model that behaves or operates like a given system when provided a set of
controlled inputs.

• The use of a data processing system to represent selected behavioral
characteristics of a physical or abstract system.

In the context of this manual, the term simulation is used whenever it is referred to
modeling physical systems in EcoStruxure Machine Expert Twin.

EIO0000005040.00 39

Creating Customized Catalogs

U
URDF: (unified robotics description format) A special type of eXtensible Markup
Language (XML) file that includes the physical description of a robot and contains
information on the mechanical structure, joints, 3-D modelling graphics, motors
and colliders. URDF files are provided by numerous robotic manufacturers for
download. EcoStruxure Machine Expert Twin allows importing URDF files for
integrating third-party robots into a project without manual programming.

40 EIO0000005040.00

Creating Customized Catalogs

Index
B
building the catalog project.....................................25

C
C# programming prerequisites20
CAD files ..15
CAD files import to Microsoft Visual Studio21
cartesian robot ..14
catalog template..20
catalogs..12
code example ...26
Collada files ..15
configuring the catalog template20
Constructor region ..22
coordinate systems reflecting parent-child
relationships..19

creating a project in Microsoft Visual Studio.............21

D
*.dae file import ...21
*.dae files ...15
debugging the catalog ...25
declaring variables ..22
disk ..14
disk tracking machine example......................... 13–14
DLL file name..25
DLL files ...12

E
EcoStruxure Machine Expert Twin Developer
license ..12

example
disk tracking machine...13

example of programming code26
example: disk tracking machine..............................14

F
Fields region ..22

G
gripper..14

H
hierarchical concept ..19
hierarchy example ...19
hierarchy programming..23

I
installing the catalog template20

L
load holders ..16

M
Machine Expert Twin Catalog Template
installation...20

Microsoft Visual Studio ..12
template installation ...20

Microsoft Visual Studio project configuration............21
Microsoft Visual Studio: building the catalog25
Microsoft Visual Studio: debugging the catalog25

N
naming the catalog .. 21, 25

P
parent-child relationship programming23
parent-child relationships19
Private Methods region22
programming code example26
programming relationships.....................................23
PTC Creo ...15
Public Methods region22
Public Properties region22

R
regions of the programming code22
relationship programming.......................................23
rotating disk ..17

S
Solidworks ..15
static components ...16

T
template

Machine Expert Twin Catalog Template20

V
variable declaration ...22

X
X axis file ..17

Y
Y axis file ..18

Z
Z axis file ..18

EIO0000005040.00 41

Schneider Electric
35 rue Joseph Monier
92500 Rueil Malmaison
France

+ 33 (0) 1 41 29 70 00

www.se.com

As standards, specifications, and design change from time to time,
please ask for confirmation of the information given in this publication.

© 2024 Schneider Electric. All rights reserved.

EIO0000005040.00

https://www.se.com

	EcoStruxure Machine Expert Twin
	Safety Information
	About the Book
	Steps to Create a Digital Model of Your Mechatronic System
	Identifying the Movements of the Machine
	Extracting CAD Files per Axis
	Creating a Hierarchical Concept of Parent-Child Relations

	Catalog Programming in C#
	Catalog Template Configuration
	Project Configuration in Microsoft Visual Studio
	Importing CAD Files to Microsoft Visual Studio
	Programming in Microsoft Visual Studio
	Programming Relations
	Building and Debugging the Catalog

	Appendix: Programming Code
	DiskTracking.cs
	Load.cs
	Motion.cs

	Glossary
	Index

