Altivar ${ }^{\circledR}$ 71W Adjustable Speed Drives Simplified Manual
 $0.75-75 \mathrm{~kW}$ (1-100 hp), 380-480 V, IP54

For use in the United States

Instruction Bulletin
30072-453-05
Retain for future use.

Table of contents

Hazard categories and special symbols 4
Before you begin 5
Product support 5
Setting up the drive 6
Preliminary recommendations 7
Drive ratings 9
Dimensions and weights 10
Mounting recommendations 11
Opening the drive 11
Adding control operators on the front of the drive 12
Position of the LED indicating DC bus capacitors are charged 13
Wiring recommendations 14
Terminals 15
Connection diagrams 21
Operation on an IT or corner grounded delta system 24
Electromagnetic compatibility, wiring 25
Setup - preliminary recommendations 28
Graphic display terminal 29
[1.1 SIMPLY START] (SIM-) menu 31
Parameters that can be changed while the drive is running or stopped 35
Detected faults - causes - remedies 36

Hazard categories and special symbols

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a Danger or Warning safety label indicates that an electrical hazard exists, which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

DANGER

DANGER indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

A WARNING

WARNING indicates a potentially hazardous situation which, if not avoided, can result in death or serious injury.

A CAUTION

CAUTION indicates a potentially hazardous situation which, if not avoided, can result in minor or moderate injury.

CAUTION

CAUTION, used without the safety alert symbol, indicates a potentially hazardous situation which, if not avoided, can result in property damage.

Important Notes

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material. © 2005-2009 Schneider Electric. All rights reserved.

The word "drive" as used in this guide refers to the controller portion of the adjustable speed drive as defined in the National Electrical Code (NEC).

The following standards are referenced in this manual:
EN 954-1: "Safety of machinery, safety related parts of control systems," year 2000, sections 1-7
IEC 61508: "Functional safety of electrical/electronic/programmable electronic safety-related systems"
IEC/EN 60204-1: "Safety of machinery—Electrical equipment of machines—Part 1: General requirements for electrical equipment on machines"
IEC 60755: General requirements for residual current operated protective devices
NFPA 79 Electrical standard for industrial machinery

Before you begin

Read and understand these instructions before performing any procedure on this drive.

A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Read and understand this manual before installing or operating the Altivar 71 (ATV71) drive. Installation, adjustment, repair, and maintenance must be performed by qualified personnel.
- The user is responsible for compliance with all international and national electrical code requirements with respect to grounding of all equipment.
- Many parts of this drive, including the printed circuit boards, operate at the line voltage. DO NOT TOUCH. Use only electrically insulated tools.
- DO NOT touch unshielded components or terminal strip screw connections with voltage present.
- DO NOT short across terminals PA/+ and PC/- or across the DC bus capacitors.
- Before servicing the drive:
- Disconnect all power, including external control power that may be present.
- Place a "DO NOT TURN ON" label on all power disconnects.
- Lock all power disconnects in the open position.
- WAIT 15 MINUTES to allow the DC bus capacitors to discharge. Then follow the "Procedure for measuring the DC bus voltage" on page 13 to verify that the DC voltage is less than 42 V . The drive LED is not an indicator of the absence of DC bus voltage.
- Install and close all covers before applying power or starting and stopping the drive.

Failure to follow these instructions will result in death or serious injury.

A WARNING

LOSS OF CONTROL

- The designer of any control scheme must consider the potential failure modes of control paths and, for certain critical control functions, provide a means to achieve a safe state during and after a path failure. Examples of critical control functions are emergency stop and overtravel stop.
- Separate or redundant control paths must be provided for critical control functions.
- System control paths may include communication links. Consideration must be given to the implications of unanticipated transmission delays or failures of the link. ${ }^{1}$
- Each implementation of an Altivar 71 drive must be individually and thoroughly tested for proper operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

1. For additional information refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems."

CAUTION

IMPROPER DRIVE OPERATION

- If no power is applied to the drive for a long period, the performance of its electrolytic capacitors will be reduced.
- If the drive is not in active service, apply power to the drive every two years using the following procedure. Do not initially connect the drive directly to full line voltage. Without a motor connected to the drive, gradually increase the voltage using an adjustable AC source connected between drive terminals L1 and L2:
- 25% of rated voltage for 30 minutes
- 50% of rated voltage for 30 minutes
- 75% of rated voltage for 30 minutes
- 100% of rated voltage for at least 5 hours
- Check drive operation before placing the drive into service.

Failure to follow these instructions can result in injury or equipment damage.

Product Support

For support and assistance, contact the Product Support Group. The Product Support Group is staffed from Monday through Friday, 8:00 am until 6:00 pm Eastern time, to assist with product selection, start-up, and diagnosis of product or application problems. Emergency phone support is available 24 hours a day, 365 days a year.
Toll free: 888-SquareD (888-778-2733)
E-Mail: drive.products.support@us.schneider-electric.com
Fax: 919-217-6508

Setting up the drive

Take delivery of the drive
Ensure that the catalog number printed on the label is the same as that on the
purchase order.
Remove the drive from its packaging and ensure that it has not been damaged in
transit.

Preliminary recommendations

Handling and storage

To protect the drive prior to installation, handle and store the device in its packaging. Ensure that the ambient conditions are acceptable. Refer to Dimensions and weights on page 10.

A WARNING

DAMAGED PACKAGING

If the packaging appears damaged, it can be hazardous to open and handle it. Do not handle or open a damaged package.
Failure to follow these instructions can result in death or serious injury.

A WARNING

DAMAGED DRIVE EQUIPMENT

Do not operate or install any drive that appears damaged.
Failure to follow these instructions can result in death or serious injury.

Handling on installation

A hoist must be used with Altivar 71W drives; for this reason the drives are fitted with handling lugs. Attach a spreader bar to the top handling lugs on the drive.

\quad A WARNING
RISK OF TOPPLING
Do not stand the drive upright. Keep the drive on the pallet until it is
installed.
Failure to follow these instructions can result in death or
serious injury.

Preliminary recommendations

Precautions

CAUTION
INCOMPATIBILE LINE VOLTAGE
Before turning on and configuring the drive, ensure that the line voltage is compatible with the supply voltage
range shown on the drive nameplate. The drive may be damaged if the line voltage is not compatible.
Failure to follow these instructions can result in equipment damage.

Separate control section power supply

If the drive's control section is powered independently of the power section (P24 and 0 V terminals), when you add or replace an option card you must supply only the power section the next time the drive is powered up. Otherwise, the drive will not recognize the new card and it will be impossible to configure it. This will cause the drive to lock in the detected fault mode.

A DANGER

UNINTENDED EQUIPMENT OPERATION

- Before turning on and configuring the Altivar 71 drive, ensure that the PWR (POWER REMOVAL) input is deactivated (at state 0) in order to help prevent unintended operation.
- Before turning the drive on or upon exiting the configuration menus, ensure that the inputs assigned to the run command are deactivated (at state 0) since they can cause the motor to start immediately.
- Refer to the characteristics and functions table in the Control Terminals section beginning on page 18 for more information about the Power Removal Input.

Failure to follow these instructions will result in death or serious injury.

The Power Removal function takes priority over any run command. For use as an emergency stop, this function requires the use of connection diagrams conforming to standard EN 954-1 category 3, "Safety of machinery, Safety related parts of control systems," and safety integrity level 2 according to IEC 61508, "Functional safety of electrical/electronic/programmable electronic safety-related systems." Consult the ATV71 Installation Manual on the CD-ROM supplied with the drive.

Drive ratings

ATV71W - Three-phase supply voltage: $\mathbf{3 8 0} . . .480$ V $50 / 60 \mathrm{~Hz}$

3-phase motor 380... 480 V

Motor Power indicated on plate (1)		Line supply					Drive			Altivar 71W Catalog number $\text { (4) }(5)$
		Max. line current(2)		Maximum prospective line Isc	Apparent power	Max. inrush current (3)	Max. available nominal current In (1)	Max. transient current for (1)		
		380 V	480 V					60 s	2 s	
kW	HP	A	A	kA	kVA	A	A	A	A	
0.75	1	3.7	3	5	2.4	19.2	2.3	3.5	3.8	ATV71W075N4
1.5	2	5.8	5.3	5	4.1	19.2	4.1	6.2	6.8	ATV71WU15N4
2.2	3	8.2	7.1	5	5.6	19.2	5.8	8.7	9.6	ATV71WU22N4
3	-	10.7	9	5	7.2	19.2	7.8	11.7	12.9	ATV71WU30N4
4	5	14.1	11.5	5	9.4	19.2	10.5	15.8	17.3	ATV71WU40N4
5.5	7.5	20.3	17	22	13.7	46.7	14.3	21.5	23.6	ATV71WU55N4
7.5	10	27	22.2	22	18.1	46.7	17.6	26.4	29	ATV71WU75N4
11	15	36.6	30	22	24.5	93.4	27.7	41.6	45.7	ATV71WD11N4
15	20	48	39	22	32	93.4	33	49.5	54.5	ATV71WD15N4
18.5	25	45.5	37.5	22	30.5	93.4	41	61.5	67.7	ATV71WD18N4
22	30	50	42	22	33	75	48	72	79.2	ATV71WD22N4
30	40	66	56	22	44.7	90	66	99	109	ATV71WD30N4
37	50	84	69	22	55.7	90	79	118.5	130	ATV71WD37N4
45	60	104	85	22	62.7	200	94	141	155	ATV71WD45N4
55	75	120	101	22	81.8	200	116	174	191	ATV71WD55N4
75	100	167	137	22	110	200	160	240	264	ATV71WD75N4

(1) These power ratings and currents are given for an ambient temperature of $50^{\circ} \mathrm{C}\left(122{ }^{\circ} \mathrm{F}\right)$ at the factory-set switching frequency, used in continuous operation (factory-set switching frequency of 4 kHz for ATV71W 075N4 to D30N4 and 2.5 kHz for ATV71W D37N4 to D75N4).
Above this factory setting, the drive will reduce the switching frequency automatically in the event of excessive temperature rise. For continuous operation above the rated switching frequency, derate the rated drive current (see the derating curves in our catalog).
(2) Current for the given motor power on a line supply with the "Max. prospective line Isc" indicated and for a drive without any external options.
(3) Peak current on power-up for the max. voltage (480 V +10\%).
(4) These drives can be ordered with a $24 V=$ power supply, allowing an additional consumption of 250 mA . In this case, add A24 at the end of the catalog number.
For example, ATV 71W075N4 becomes ATV 71W075N4A24.
(5) ATV71000N4: In the U.S., this is a UL Type 12 drive (connection plate for compliance with UL Type 12).

Dimensions and weights

ATV71W

ATV71W	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~mm} \\ & \text { (in.) } \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{~mm} \\ & \text { (in.) } \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \mathrm{~mm} \\ & \text { (in.) } \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{~mm} \\ & \text { (in.) } \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~mm} \\ & \text { (in.) } \end{aligned}$	$\begin{aligned} & \hline \mathrm{K} \\ & \mathrm{~mm} \\ & \text { (in.) } \\ & \hline \end{aligned}$	$\begin{aligned} & \varnothing \\ & \mathrm{mm} \\ & \text { (in.) } \end{aligned}$	Weight kg (lb.)
075N4 U15N4 U22N4	$\begin{aligned} & \hline 240 \\ & (9.45) \end{aligned}$	$\begin{aligned} & 490 \\ & (19.29) \end{aligned}$	$\begin{aligned} & 272 \\ & (10.71) \end{aligned}$	$\begin{aligned} & 200 \\ & (7.87) \end{aligned}$	$\begin{aligned} & 476 \\ & (18.74) \end{aligned}$	$\begin{aligned} & 6 \\ & (0.23) \end{aligned}$	$\begin{aligned} & 6 \\ & (0.23) \end{aligned}$	$\begin{array}{\|l\|} \hline 12 \\ (27) \end{array}$
$\begin{aligned} & \text { U30N4 } \\ & \text { U40N4 } \end{aligned}$	$\begin{array}{\|l\|} \hline 240 \\ (9.45) \\ \hline \end{array}$	$\begin{aligned} & 490 \\ & (19.29) \end{aligned}$	$\begin{aligned} & 286 \\ & (11.26) \end{aligned}$	$\begin{aligned} & 200 \\ & (7.87) \end{aligned}$	$\begin{aligned} & 476 \\ & (18.74) \end{aligned}$	$\begin{aligned} & 6 \\ & (0.23) \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & (0.23) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 13 \\ (29) \\ \hline \end{array}$
U55N4 U75N4	$\begin{array}{\|l} 260 \\ (10.24) \end{array}$	$\begin{aligned} & 525 \\ & (20.67) \end{aligned}$	$\begin{array}{\|l} 286 \\ (11.26) \end{array}$	$\begin{aligned} & 220 \\ & (8.66) \end{aligned}$	$\begin{aligned} & 511 \\ & (20.12) \end{aligned}$	$\begin{aligned} & 6 \\ & (0.23) \end{aligned}$	$\begin{aligned} & 6 \\ & (0.23) \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \\ (36) \\ \hline \end{array}$
D11N4	$\begin{aligned} & 295 \\ & (11.61) \end{aligned}$	$\begin{aligned} & 560 \\ & (22.05) \end{aligned}$	$\begin{aligned} & 315 \\ & (12.40) \end{aligned}$	$\begin{aligned} & 250 \\ & (9.84) \end{aligned}$	$\begin{aligned} & 544 \\ & (21.42) \end{aligned}$	$\begin{aligned} & 8 \\ & (0.31) \end{aligned}$	$\begin{aligned} & 6 \\ & (0.23) \end{aligned}$	$\begin{array}{\|l\|} \hline 21 \\ (47) \end{array}$
$\begin{array}{\|l} \text { D15N4 } \\ \text { D18N4 } \end{array}$	$\begin{array}{\|l} \hline 315 \\ (12.40) \\ \hline \end{array}$	$\begin{array}{\|l} 665 \\ (26.18) \\ \hline \end{array}$	$\begin{array}{\|l} 315 \\ (12.40) \\ \hline \end{array}$	$\begin{aligned} & 270 \\ & (10.63) \end{aligned}$	$\begin{array}{\|l\|} \hline 647 \\ (25.47) \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & (0.39) \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & (0.23) \end{aligned}$	$\begin{array}{\|l\|} \hline 31 \\ (69) \\ \hline \end{array}$
D22N4	$\begin{aligned} & 285 \\ & (11.22) \end{aligned}$	$\begin{aligned} & 720 \\ & (28.35) \end{aligned}$	$\begin{aligned} & 315 \\ & (12.40) \end{aligned}$	$\begin{aligned} & 245 \\ & (9.65) \end{aligned}$	$\begin{array}{\|l\|} \hline 700 \\ (27.56) \end{array}$	$\begin{array}{\|l\|} \hline 10 \\ (0.39) \\ \hline \end{array}$	$\begin{aligned} & 7 \\ & (0.28) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 34 \\ (75) \\ \hline \end{array}$
$\begin{array}{\|l} \text { D30N4 } \\ \text { D37N4 } \end{array}$	$\begin{array}{\|l} 285 \\ (11.22) \\ \hline \end{array}$	$\begin{aligned} & 880 \\ & (34.65) \end{aligned}$	$\begin{array}{\|l} 343 \\ (13.50) \end{array}$	$\begin{aligned} & 245 \\ & (9.65) \end{aligned}$	$\begin{array}{\|l} 860 \\ (33.86) \end{array}$	$\begin{aligned} & 10 \\ & (0.39) \end{aligned}$	$\begin{aligned} & 7 \\ & (0.28) \end{aligned}$	$\begin{array}{\|l\|} \hline 43 \\ \hline(95) \\ \hline \end{array}$
$\begin{aligned} & \hline \text { D45N4 } \\ & \text { D55N4 } \\ & \text { D75N4 } \end{aligned}$	$\begin{aligned} & \hline 362 \\ & (14.25) \end{aligned}$	$\begin{aligned} & 1000 \\ & (39.37) \end{aligned}$	$\begin{aligned} & 364 \\ & (14.33) \end{aligned}$	$\begin{aligned} & 300 \\ & (11.81) \end{aligned}$	$\begin{aligned} & 975 \\ & (38.39) \end{aligned}$	$\begin{aligned} & 10 \\ & (0.39) \end{aligned}$	$\begin{aligned} & 9 \\ & (0.35) \end{aligned}$	$\begin{aligned} & 69 \\ & (152) \end{aligned}$

Mounting recommendations

Depending on the conditions in which the drive is to be used, its installation will require certain precautions and the use of appropriate accessories.

- Install the drive vertically, $\pm 10^{\circ}$.
- Do not place it close to heating elements.
- Leave sufficient free space to ensure that the air required for cooling purposes can circulate from the bottom to the top of the unit.
- Maximum operating temperature is $50^{\circ} \mathrm{C}$. For derating curves based on ambient temperatures greater than $50^{\circ} \mathrm{C}$ and for switching frequencies, see our catalog.

Opening the drive

To open the drive, remove the front panel and disconnect the graphic display terminal's connection cable as shown below:

Adding control operators on the front of the drive

One or two 22 mm diameter control operators can be added on the front of the drive. These units must be positioned as shown in the diagram and table below.

A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH
Ensure that there is sufficient clearance between any added equipment and the drive when the front of the drive is closed.

Failure to follow these instructions will result in death or serious injury.

ATV71W	A mm (in.)	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~mm} \\ & \text { (in.) } \end{aligned}$	C mm (in.)	\varnothing mm (in.)
075N4 U15N4 U22N4	$\begin{aligned} & \hline 60.5 \\ & (2.38) \end{aligned}$	$\begin{array}{\|l} 80 \\ (3.15) \end{array}$	$\begin{array}{\|l\|} \hline 30 \\ (1.18) \end{array}$	$\begin{aligned} & 22.3 \\ & (0.88) \end{aligned}$
$\begin{array}{\|l\|} \text { U30N4 } \\ \text { U40N4 } \end{array}$	$\begin{aligned} & 60.5 \\ & (2.38) \end{aligned}$	$\begin{aligned} & 80 \\ & (3.15) \end{aligned}$	$\begin{array}{\|l} \hline 30 \\ (1.18) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 22.3 \\ (0.88) \\ \hline \end{array}$
$\begin{array}{\|l} \hline \text { U55N4 } \\ \text { U75N4 } \end{array}$	$\begin{array}{\|l\|} \hline 60.5 \\ (2.38) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 80 \\ (3.15) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 30 \\ (1.18) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 22.3 \\ (0.88) \\ \hline \end{array}$
D11N4	$\begin{aligned} & \hline 77 \\ & (3.03) \end{aligned}$	$\begin{array}{\|l\|} \hline 80 \\ (3.15) \end{array}$	$\begin{array}{\|l\|} \hline 30 \\ (1.18) \end{array}$	$\begin{array}{\|l\|} \hline 22.3 \\ (0.88) \\ \hline \end{array}$
$\begin{array}{\|l} \text { D15N4 } \\ \text { D18N4 } \end{array}$	$\begin{array}{\|l\|} \hline 77 \\ (3.03) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 81 \\ (3.19) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 30 \\ (1.18) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 22.3 \\ (0.88) \\ \hline \end{array}$
D22N4	$\begin{array}{\|l} \hline 73 \\ (2.87) \end{array}$	$\begin{array}{\|l\|} \hline 119 \\ (4.69) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 30 \\ (1.18) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 22.3 \\ (0.88) \end{array}$
$\begin{array}{\|l\|l\|} \hline \text { D30N4 } \\ \text { D37N4 } \end{array}$	$\begin{array}{\|l\|} \hline 69 \\ (2.72) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 218 \\ (8.58) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 30 \\ (1.18) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 22.3 \\ (0.88) \\ \hline \end{array}$
$\begin{array}{\|l} \text { D45N4 } \\ \text { D55N4 } \\ \text { D75N4 } \end{array}$	$\begin{array}{\|l} 102 \\ (4) \end{array}$	$\begin{aligned} & 280 \\ & (11) \end{aligned}$	$\begin{array}{\|l\|} \hline 30 \\ (1.18) \end{array}$	$\begin{array}{\|l\|} \hline 22.3 \\ (0.88) \end{array}$

Position of the LED indicating DC bus capacitors are charged

Position of the LED indicating DC bus capacitors are charged

Position of the LED indicating DC bus capacitors are charged for
ATV71W075N4 to D22N4. See "Drive ratings" on page 9 for the drives in this range.
Example: ATV71WD18N4

Position of the LED indicating DC bus capacitors are charged for
ATV71WD30N4 to D75N4. See "Drive ratings" on page 9 for the drives in this range.
Example: ATV71WD55N4

Note: This LED is not an indicator of the absence of DC bus voltage.

Procedure for measuring the DC bus voltage

A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH
Read and understand the instructions on page 5 before performing this procedure.
Failure to follow these instructions will result in death or serious injury.
The DC bus voltage can exceed $1000 \mathrm{~V}=-$. Use a properly rated voltage-sensing device when performing this procedure. To measure the DC bus voltage:

1 Disconnect the drive power supply.
2 Wait 15 minutes to allow the DC bus capacitors to discharge.
3 Measure the voltage of the DC bus between the $\mathrm{PA} /+$ and $\mathrm{PC} /$ - terminals to ensure that the voltage is less than $42 \mathrm{~V}=-$. See page 15 for the arrangement of the power terminals.
4 If the DC bus capacitors do not discharge completely, contact your local Schneider Electric representative. Do not repair or operate the drive.

Wiring recommendations

Power

Ground the drive according to local and national code requirements. A minimum wire size of $13.29 \mathrm{~mm}^{2}$ (6 AWG) may be required to meet standards limiting leakage current.

\triangle DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

Ground equipment using the provided ground connecting point as shown in the figure below. The drive panel must be properly grounded before power is applied.
Failure to follow these instructions will result in death or serious injury.

- Ensure that the resistance of the ground is one ohm or less.
- When grounding several drives, you must connect each one directly, as shown in the figure to the left.
- Do not loop the ground cables or connect them in series.

A WARNING

IMPROPER WIRING PRACTICES

- The ATV71 drive will be damaged if input line voltage is applied to the output terminals (U/T1,V/T2,W/T3).
- Check the power connections before energizing the ATV71 drive.
- If replacing another drive, verify that all wiring connections to the ATV71 drive comply with all wiring instructions in this manual.

Failure to follow these instructions can result in death, serious injury, or equipment damage.
Where local and national codes require upstream protection by means of a residual current device, use a type A device for single-phase drives and a type B device for three-phase drives as defined in the IEC Standard 60755. Choose a suitable model integrating:

- High frequency current filtering
- A time delay that helps to prevent tripping caused by the load from stray capacitance on power-up. The time delay is not possible for 30 mA devices; in this case, choose devices with immunity against nuisance tripping.

A WARNING
INADEQUATE OVERCURRENT PROTECTION
- Overcurrent protective devices must be properly coordinated.
- The Canadian Electrical Code and the National Electrical Code require branch circuit protection. Use the
fuses recommended on the drive nameplate to achieve published short-circuit current ratings.
- Do not connect the drive to a power feeder whose short-circuit capacity exceeds the drive short-circuit
current rating listed on the drive nameplate.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Wiring recommendations

A CAUTION
IMPROPER USE OF A BRAKING RESISTOR
- Only use the braking resistance values recommended in our catalogs.
- Wire a thermal overload relay in sequence or configure braking resistor protection so that the drive power
section AC supply is disconnected in the event of a detected fault. Refer to the Programming Manual.
Failure to follow these instructions can result in injury or equipment damage.

Terminals

Access to terminals

The diagrams below illustrate the location of the various terminals on the drive:

Example: ATV71WD18N4

Functions of power terminals

Terminals	Function
$\stackrel{1}{=}$	Ground connection terminal
R/L1 - S/L2 - T/L3	Power section AC line supply
PO	DC bus [+ polarity]
PA/+	Output to braking resistor (+ polarity)
PB	Output to braking resistor
PC/-	DC bus [- polarity]
U/T1 - V/T2 - W/T3	Outputs to the motor

Remove the link between PO and PA/+ only if a DC choke has been added. The PO and PA/+ terminal screws must always be fully tightened, since a high current flows through the common link. See following table for torque values.

Terminals

Characteristics of power terminals

ATV71W *	Maximum wire size			Tightening torque
	mm^{2}	AWG	kcmil	$\mathrm{N} \cdot \mathrm{m}(\mathrm{lbf} \cdot \mathrm{in})$
075N4 \ldots. U40N4	4	10		$1.4(12.3)$
U55N4, U75N4	6	8		$3(26.5)$
D11N4	16	4		$3(26.5)$
D15N4, D18N4	35	2		$5.4(47.7)$
D22N4 ... D37N4	50	$1 / 0$		$12(102.2)$
D45N4 ... D75N4	150		300	$41(360)$

1. For drive ranges, refer to page 9 of this guide.

Terminals

Terminals for additional internal 24 V supply on the ATV71W.ゃ・••A24
Example: ATV71WD55N4A24

Removing the control terminal card

To make it easier to wire the drive control section, the control terminal card can be removed:
1 Loosen the screw until the spring is fully extended.
2 Remove the card by sliding it downwards.

Terminals

Arrangement of the control terminals

- Maximum wire size: $2.5 \mathrm{~mm}^{2}$ (14 AWG)
- Maximum tightening torque: $0.6 \mathrm{~N} \cdot \mathrm{~m}(5.3 \mathrm{lbf} \cdot \mathrm{in})$

DANGER

UNINTENDED EQUIPMENT OPERATION

- The accidental grounding of logic inputs configured for Sink Logic can result in unintended activation of drive functions.
- Protect the signal conductors against damage that could result in unintentional conductor grounding.
- Follow NFPA 79 and EN 60204 guidelines for proper control circuit grounding practices.

Failure to follow these instructions will result in death or serious injury.

CAUTION
IMPROPERLY SECURED TERMINAL CARD
When replacing the control terminal card, it is essential to fully tighten the captive screw. Torque the captive
screw to 1.1 to $1.7 \mathrm{~N} \cdot \mathrm{~m}$ (9.7 to $15 \mathrm{lbf} \cdot \mathrm{in}$).
Failure to follow these instructions can result in equipment damage.

Note: The ATV71 drive is supplied with links between the PWR and +24 terminals and the Al1- and COM terminals.

Characteristics and functions of the control terminals

Terminals	Function	Electrical characteristics
$\begin{aligned} & \text { R1A } \\ & \text { R1B } \\ & \text { R1C } \end{aligned}$	1 relay logic output, one N.C. contact and one N.O. contact with common point (R1A to R1C is N.O.; R1B to R1C is N.C.)	Minimum switching capacity: 3 mA for $24 \mathrm{~V}=$ Maximum switching capacity: - on resistive load ($\cos \varphi=1$): 5 A for $250 \mathrm{~V} \sim$ or $30 \mathrm{~V}=-$ - on inductive load ($\cos \varphi=0.4$ and L/R $=7 \mathrm{~ms}$): 2 A for $250 \mathrm{~V} \sim$ or $30 \mathrm{~V}=$ Max. response time: $7 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ Electrical service life: 100,000 operations
$\begin{aligned} & \text { R2A } \\ & \text { R2C } \end{aligned}$	1 relay logic output one N.O. contact	
+10	+10 V =-- power supply for reference potentiometer 1 to $10 \mathrm{k} \Omega$	- $+10 \mathrm{~V}=(10.5 \mathrm{~V} \pm 0.5 \mathrm{~V})$ - 10 mA max.

NOTE: $\Delta \theta=$ temperature change

Characteristics and functions of the control terminals (cont.)

Terminals	Function	Electrical characteristics			
$\begin{aligned} & \mathrm{Al} 1+ \\ & \mathrm{Al} 1- \end{aligned}$	Differential analog input Al1	- -10 to $+10 \mathrm{~V}=$ (maximum voltage 24 V) - Reaction time: $2 \mathrm{~ms} \pm 0.5 \mathrm{~ms}, 11$-bit resolution +1 sign bit - Accuracy $\pm 0.6 \%$ for $\Delta \theta=60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$, linearity $\pm 0.15 \%$ of max. value			
COM	Analog I/O common	0 V			
AI2	Depending on the software configuration: Analog voltage or current input	- Analog input 0 to $+10 \mathrm{~V}=-$ (maximum voltage 24 V), impedance $30 \mathrm{k} \Omega$ - Analog input $X-Y \mathrm{~mA}, \mathrm{X}$ and Y programmable from 0 to 20 mA , impedance 250Ω - Reaction time: $2 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ - 11-bit resolution, accuracy $\pm 0.6 \%$ for $\Delta \theta=60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$, linearity $\pm 0.15 \%$ of max. value			
COM	Analog I/O common	0 V			
AO1	Depending on the software configuration: Analog voltage or current output or logic output	- Analog output 0 to $+10 \mathrm{~V}=-$, min. load impedance $50 \mathrm{k} \Omega$ - Analog output $X-Y \mathrm{~mA}, \mathrm{X}$ and Y can be programmed from 0 to 20 mA , max. load impedance 500Ω - 10-bit resolution, reaction time: $2 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ - Accuracy $\pm 1 \%$ for $\Delta \theta=60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$, linearity $\pm 0.2 \%$ of max. value - Logic output: 0 or $10 \mathrm{~V}, 0$ to 20 mA			
P24	Input for external $+24 \mathrm{~V}=-$ - control power supply	- $+24 \mathrm{~V}=(\min .19 \mathrm{~V}$, max. 30 V) - Power 30 W			
OV	Logic input common and 0 V of external P24 power supply	0 V			
$\begin{aligned} & \text { LI1 } \\ & \text { LI2 } \\ & \text { LI3 } \\ & \text { LI4 } \\ & \text { LI5 } \end{aligned}$	Programmable logic inputs	- $+24 \mathrm{~V}=$ (max. 30 V) - Impedance 3.5 k Ω - Reaction time: $2 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$	SW1 Switch	State 0	State 1
			Source (factory setting)	< 5 V ---	> $11 \mathrm{~V}=-$
			Sink Int or Sink Ext	> $16 \mathrm{~V}=$	$<10 \mathrm{~V}=-$
LI6	Depending on the position of the SW2 switch: LI (Programmable logic input) or PTC (Input for PTC probes)	SW2 = LI (factory setting): - Same characteristics as logic inputs LI1 to LI5 SW2 = PTC: - Trip threshold $3 \mathrm{k} \Omega$, reset threshold $1.8 \mathrm{k} \Omega$ - Short-circuit detection threshold $<50 \Omega$			
+24	Logic input power supply	SW1 switch in Source or Sink Int position: - Internal $+24 \mathrm{~V}=-\mathrm{power}$ supply (min. 21 V , max. 27 V), protected against short-circuits and overloads - 200 mA max. SW1 switch in Sink Ext position: - Input for external +24 V --- power supply for the logic inputs			
PWR	Power Removal function input	- $24 \mathrm{~V}=$ (max. 30 V) - Impedance $1.5 \mathrm{k} \Omega$ - State 0 if < 2 V , state 1 if $>17 \mathrm{~V}$ - Reaction time: 10 ms			
	When PWR is not connected to 24 V , the motor cannot be started (compliance with functional safety standard EN 954-1 category 3, "Safety of machinery, Safety related parts of control systems," and IEC 61508 "Functional safety of electrical/electronic/programmable electronic safety-related systems.")				
NOTE: $\Delta \theta=$ temperature change					

Terminals

Characteristics and functions of the terminals: VW3A3201 option card

Maximum wire size: $1.5 \mathrm{~mm}^{2}$ (16 AWG)
Maximum tightening torque: $0.25 \mathrm{~N} \cdot \mathrm{~m}(2.21 \mathrm{lbf} \cdot \mathrm{in})$
R3A, R3B, R3C, and LI7-LI10 have the same characteristics as the control card.

Terminals	Function	Electrical characteristics
$\begin{aligned} & \text { TH1+ } \\ & \text { TH1- } \end{aligned}$	PTC probe input	- Trip threshold $3 \mathrm{k} \Omega$ reset threshold $1.8 \mathrm{k} \Omega$ - Short-circuit detection threshold $<50 \Omega$
$\begin{aligned} & \text { LO1 } \\ & \text { LO2 } \end{aligned}$	Open collector programmable logic outputs	- $+24 \mathrm{~V}=-\mathrm{m}($ max. 30 V) - Max. current 200 mA for internal power supply and 200 mA for external power supply - Reaction time: $2 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$
CLO	Logic output common	-
0 V	0 V	0 V

Characteristics and functions of the terminals: VW3A3202 option card

Maximum wire size: $1.5 \mathrm{~mm}^{2}(16 \mathrm{AWG})$. Maximum tightening torque: $0.25 \mathrm{~N} \cdot \mathrm{~m}(2.21 \mathrm{lbf} \cdot \mathrm{in})$
R4A, R4B, R4C, and LI11-LI14 have the same characteristics as the control card.

Terminals	Function	Electrical characteristics
$\begin{aligned} & \text { TH2 + } \\ & \text { TH2 - } \end{aligned}$	PTC probe input	- Trip threshold $3 \mathrm{k} \Omega$, reset threshold $1.8 \mathrm{k} \Omega$ - Short-circuit detection threshold $<50 \Omega$
RP	Frequency input	- Frequency range $0 \ldots 30 \mathrm{kHz}$ - Maximum input voltage $30 \mathrm{~V}, 15 \mathrm{~mA}$ - Add a resistor if the input voltage is greater than 5 V (510Ω for $12 \mathrm{~V}, 910 \Omega$ for $15 \mathrm{~V}, 1.3 \mathrm{k} \Omega$ for 24 V) - State 0 if $<1.2 \mathrm{~V}$, state 1 if $>3.5 \mathrm{~V}$
$\begin{aligned} & \text { LO3 } \\ & \text { LO4 } \end{aligned}$	Open collector programmable logic outputs	- + $24 \mathrm{~V}=$ (max. 30 V) - Max. current 20 mA for internal power supply and 200 mA for external power supply - Reaction time: $5 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$
CLO	Logic output common	-
0 V	0 V	0 V

Characteristics and functions of the terminals: Encoder interface card

Maximum wire size: $1.5 \mathrm{~mm}^{2}$ (16 AWG)
Maximum tightening torque: $0.25 \mathrm{~N} \cdot \mathrm{~m}(2.21 \mathrm{lbf} \cdot \mathrm{in})$

Terminals	Function	Electrical characteristics	
		VW3A3401	VW3A3402, VW3A3404, VW3A3406
+Vs	Encoder power supply	- $5 \mathrm{~V}=-$ (max. $5.5 \mathrm{~V}=-$) protected against short-circuits and overloads - Max. current 200 mA	- $15 \mathrm{~V}=-$ (max. $16 \mathrm{~V}=-$) protected against short-circuits and overloads - Max. current 175 mA
OVs			
$\begin{aligned} & \mathrm{A}, / \mathrm{A} \\ & \mathrm{~B}, / \mathrm{B} \end{aligned}$	Incremental logic inputs	- Max. resolution: 5000 points/rev - Max. frequency: 300 kHz	
Terminals	Function	Electrical characteristics	
		VW3A3403, VW3A3405	VW3A3407
+Vs	Encoder power supply	- $12 \mathrm{~V}=-$ (max. $13 \mathrm{~V}=-)$ protected against short-circuits and overloads - Max. current 175 mA	- $24 \mathrm{~V}=-(\min .20 \mathrm{~V}=-$, max. $30 \mathrm{~V}=-\mathrm{-})$ protected against short-circuits and overloads - Max. current 100 mA
OVs			
$\begin{aligned} & \mathrm{A}, / \mathrm{A} \\ & \mathrm{~B}, / \mathrm{B} \end{aligned}$	Incremental logic inputs	- Max. resolution: 5000 points/rev - Max. frequency: 300 kHz	

Type of incremental encoder outputs to be used

- RS422 outputs: VW3A3401 or VW3A3402
- Open collector outputs: VW3A3403 or VW3A3404
- "Push-pull" outputs: VW3A3405, VW3A3406, or VW3A3407

Connection diagrams

Diagrams conforming to standards EN 954-1 category 1, IEC 61508 capacity SIL1, stopping category 0 in accordance with IEC/EN 60204-1 ${ }^{1}$
 Three phase power supply with upstream isolation via contactor

Note: Install interference suppressors on all inductive circuits (such as relays, contactors, solenoid valves, and florescent lighting) near the drive or connected on the same circuit.

Choice of associated components: Please refer to the catalog.
(1) Line reactor, if used
(2) Relay contacts for remote signalling of the drive status
(3) Connection of the logic input common depends on the position of the SW1 switch
(4) Software-configurable current
($0 \ldots .20 \mathrm{~mA}$) or voltage ($0 \ldots 10 \mathrm{~V}$) analog input
(5) Fuses

Note: See page 28 for factory programming configuration.

A CAUTION

IMPROPER USE OF A BRAKING RESISTOR

- Only use the braking resistance values recommended in our catalogs.
- Wire a thermal overload relay in sequence or configure braking resistor protection so that the drive power section AC supply is disconnected in the event of a detected fault. Refer to the Programming Manual.

Failure to follow these instructions can result in injury or equipment damage.

1. EN 954-1: "Safety of machinery, Safety related parts of control systems."

IEC 61508: "Functional safety of electrical/electronic/programmable electronic safety-related systems"
IEC/EN 60204-1: "Safety of Machinery—Electrical Equipment of Machines—Part 1: General Requirements for Electrical Equipment on Machines"

Connection diagrams

Control card connection diagram

A1 ATV71eeeee

Logic input switch (SW1)

The logic input switch (SW1) is used to adapt the operation of the logic inputs to the technology of the programmable controller outputs.

- Set the switch to Source (factory setting) if using PLC outputs with PNP transistors.
- Set the switch to Sink Int or Sink Ext if using PLC outputs with NPN transistors.

Internal power supply

SW1 switch set to "Source" position

SW1 switch set to "Sink Int" position

External power supply

SW1 switch set to "Source" position

SW1 switch set to "Sink Ext" position

DANGER

UNINTENDED EQUIPMENT OPERATION

- The accidental grounding of logic inputs configured for Sink Logic can result in unintended activation of drive functions.
- Protect the signal conductors against damage that could result in unintentional conductor grounding.
- Follow NFPA 79 and EN 60204 guidelines for proper control circuit grounding practices.

Failure to follow these instructions will result in death or serious injury.

Connection diagrams

Bipolar speed reference

SW2 switch

The LI6 logic input switch (SW2) makes it possible to use the LI6 input:

- Either as a logic input by setting the switch to LI (factory setting)
- Or for motor protection via PTC probes by setting the switch to PTC

Control power supply via an external source
The control card can be powered by an external $+24 \mathrm{~V}=-$ supply

Connection diagrams for option cards

Please refer to the Installation Manual on the CD-ROM supplied with the drive.

Additional internal 24 V supply on ATV71WeeeeeeA24

The 24 V supply is provided by the drive's DC bus.

Operation on an IT or corner grounded delta system

ATV71WeeeoN4 with integrated class A EMC filter

When operating the drive on an IT system (isolated or impedance grounded neutral), use a permanent insulation monitor compatible with non-linear loads, such as a Merlin Gerin type XM200 or equivalent.

Altivar 71W drives feature built-in RFI filters. When an ATV71WeeeeN4 is operating on an isolated or impedance grounded electrical distribution system or a corner grounded delta system, these filters must be isolated (disconnected) from ground as follows.

A jumper must be set to disconnect the filters on ATV71eeeeN4 drives, with the exception of ATV71eD30N4 drives, which have two jumpers head-to-tail.
These jumpers are located on the bottom left near terminal L1.

Example: ATV71WD18N4

On ATV71WeeeA24 drives, do not move the 24 V power supply jumper, which is factory-set to disconnected.

CAUTION

DAMAGE TO DRIVE

- Do not exceed 4 kHz switching frequency if the filters are disconnected.
- Refer to the Programming Manual on the CD-ROM supplied with the drive to adjust parameter SFr.

Failure to follow these instructions can result in equipment damage.

Electromagnetic compatibility, wiring

Principle and precautions

IMPORTANT: The high frequency equipotential ground connection between the drive, motor, and cable shielding does not eliminate the need to connect the ground (PE) conductors (green-yellow) to the appropriate terminals on each unit. To help accomplish this, the user must follow the following points:

- Grounds between the drive, motor, and cable shielding must have high-frequency equipotentiality.
- When using shielded cable for the motor, use a 4-conductor cable so that one wire will be the ground connection between the motor and the drive. Size of the ground conductor must be selected in compliance with local and national codes. The shield can then be grounded at both ends. Metal ducting or conduit can be used for part or all of the shielding length, provided there is no break in continuity.
- When using shielded cable for the Dynamic Brake (DB) resistors, use a 3-conductor cable so that one wire will be the ground connection between the DB resistor assembly and the drive. Size of the ground conductor must be selected in compliance with local and national codes. The shield can then be grounded at both ends. Metal ducting or conduit can be used for part or all of the shielding length, provided there is no break in continuity.
- When using shielded cable for control signals, if the cable is connecting equipment that is close together and the grounds are bonded together, then both ends of the shield can be grounded. If the cable is connected to equipment that may have a different ground potential, then ground the shield at one end only to prevent large currents from flowing in the shield. The shield on the ungrounded end may be tied to ground with a capacitor (for example: $10 \mathrm{nF}, 100 \mathrm{~V}$ or higher) in order to provide a path for the higher frequency noise.
- Keep the control circuits away from the power circuits. For control and speed reference circuits, use of shielded twisted cables with a pitch of between 25 and 50 mm (0.98 and 1.97 in .) is recommended.
- Ensure maximum separation between the power supply cable (line supply) and the motor cable and also ensure maximum separation between the control cables and any power cables.
- The motor cables must be at least $0.5 \mathrm{~m}(20 \mathrm{in}$.) long.
- Do not use surge arresters or power factor correction capacitors on the variable speed drive output.
- If using an additional input filter, refer to the Installation Guide for more information.
- For installation of the EMC plate provided with the drive and instructions for meeting EN55011 Class A directive, refer to the Installation Guide.

Connection plates:

There is a metric connection plate on the lower section of the drives.
Note: In the U.S., the ATV71WeeeN4 drives come with a metric plate mounted to the drive and an additional blank connection plate requiring holes punched to the appropriate conduit size.

A: Hole for line supply cable
B: Hole for shielded motor cable (use a metal cable gland)
C: Hole for control cable
The plates also feature markings should holes be required for:
D: DC bus or braking resistor cable
E: Communication option cable
F, G, H, I, J: Control cables

Diameters of holes for ATV71WeeeeeN4

ATV71W ${ }^{1}$	IP54 drive plates		
	A $\mathrm{mm}(\mathrm{in})$	B $\mathrm{mm}(\mathrm{in})$	C $\mathrm{mm}(\mathrm{in})$
075N4 to U55N4	$20.5(0.81)$	$25.5(1.00)$	$16.4(0.65)$
U75N4 to D11N4	$20.5(0.81)$	$25.5(1.00)$	$16.4(0.65)$
D15N4 to D22N4	$32.5(1.28)$	$32.5(1.28)$	$16.4(0.65)$
D30N4	$40.5(1.60)$	$40.5(1.60)$	$16.4(0.65)$
D37N4 to D45N4	$50.5(1.99)$	$40.5(1.60)$	$16.4(0.65)$
D55N4 to D75N4	$63.5(2.50)$	$50.5(1.99)$	$16.4(0.65)$
D90N4	$63.5(2.50)$	$50.5(1.99)$	$16.4(0.65)$

1. For drive ranges, refer to page 9 of this guide.

Electromagnetic compatibility, wiring

Installation diagram, control cables

ATV71•075N4 to D22N4. See "Drive ratings" on page 9 for the drives in this range.
Mount and ground the shielding of cables 2, 3, and 5 as close as possible to the drive:

- Strip the cable to expose the shielding.
- Use stainless metal cable clamps on the parts from which the shielding has been stripped, to attach them to the plate (1).
- The exposed shielding must be clamped tightly enough to the metal sheet to ensure proper electrical contact.

Example:

1 Grounded casing
2 Shielded cables for connecting the control-signal section. For applications requiring several conductors, use cables with a small cross-section ($0.5 \mathrm{~mm}^{2}-20 \mathrm{AWG}$).

3 Shielded cables for connecting the encoder
4 Non-shielded wires for relay contact output
5 Shielded cables for connecting the Power Removal function input

Electromagnetic compatibility, wiring

Installation diagram, control cables

ATV71• D30N4 to D75N4. See "Drive ratings" on page 9 for the drives in this range.
Mount and ground the shielding of cables 1, 2, and 3 as close as possible to the drive:

- Strip the cable to expose the shielding.
- Use stainless metal cable clamps to attach the parts from which the shielding has been stripped.
- The exposed shielding must be clamped tightly enough to the metal sheet to ensure proper electrical contact.

1 Shielded cables for connecting the control-signal section. For applications requiring several conductors, use cables with a small cross-section ($0.5 \mathrm{~mm}^{2}-20$ AWG).

2 Shielded cables for connecting the Power Removal function input

3 Shielded cables for connecting the encoder
4 Unshielded wires for the relay contact output

Mounting and connecting the shielded motor cable with metal cable gland (not supplied with the drive)

- Prepare the shielded cable by stripping both ends ready for connection.
- Loosen the cover of the cable gland.
- Attach the shielded cable to the cable gland ensuring it is fully in contact (throughout 360°).
- Fold back the exposed shielding and clamp it between the ring and the body of the cable gland, and tighten the cover.

Setup - preliminary recommendations

Drive settings (factory configuration)

The Altivar 71 is factory-set for the most common operating conditions:

- Macro configuration: Start/Stop
- Motor frequency: 50 Hz
- Constant torque applications, with sensorless flux vector control
- Normal stop mode on deceleration ramp
- Stop mode in the event of a detected fault: Freewheel
- Linear, acceleration and deceleration ramps: 3 seconds
- Low speed: 0 Hz
- High speed: 50 Hz
- Motor thermal current = rated drive current
- Standstill injection braking current $=0.7 \times$ rated drive current, for 0.5 seconds
- No automatic starts after a detected fault
- Switching frequency 2.5 kHz or 12 kHz depending on drive rating
- Logic inputs:
- LI1: Forward (1 operating direction), 2-wire control on transition
- LI2: Inactive (not assigned)
- LI3: Switching of $2^{\text {nd }}$ speed reference, Ref 1B Switching
- LI4: Drive reset after a detected fault is cleared
- LI5, LI6: Inactive (not assigned)
- Analog inputs:
- Al1: $1^{\text {st }}$ speed reference $0+10 \mathrm{~V}$, Ref 1 Channel
- AI2: $2^{\text {nd }}$ speed reference 0-20 mA, Ref 1B Channel
- Relay R1: The R1C to R1A contact opens and the R1C to R1B contact closes in the event of a detected fault or when the drive is powered off.
- Relay R2: The R2A to R2C contact closes when the drive is running.
- Analog output AO1: 0-20 mA, Motor Frequency

For programming instructions, consult the Altivar 71 Programming Manual provided on the CD-ROM included with the drive.

Option card factory settings

The option card inputs/outputs are not factory-set.

Power switching via line contactor

CAUTION
EXCESSIVE LINE CONTACTOR SWITCHING
- Avoid operating the contactor frequently to avoid premature aging of the filter capacitors.
- Do not have cycle times less than 60 seconds.
Failure to follow these instructions can result in equipment damage.

Starting

Important:
In factory settings mode, the motor can only be supplied with power once the "forward," "reverse," and "DC injection stop" commands have been reset in the following instances: on power-up, on a manual drive reset after a fault is cleared, or after a stop command.
If the commands have not been reset, the drive will display " nSt " and will not start.

Test on low-power motor or without motor, use of motors in parallel

Consult the Programming Manual on the CD-ROM supplied with the drive.

Graphic display terminal

Description of terminal

Note: Buttons 3, 4, 5, and 6 can be used to control the drive directly, if control via the terminal is activated.

Drive state codes

- ACC: Acceleration
- CLI: Current limiting
- CTL: Controlled stop on input phase loss
- DCB: DC injection braking in progress
- DEC: Deceleration
- FLU: Motor fluxing in progress
- FRF: Drive at fallback speed
- FST: Fast stop
- NLP: No line power (no line supply on L1, L2, L3)
- NST: Freewheel stop
- OBR: Auto-adapted deceleration
- PRA: Power Removal function active (drive locked)
- RDY: Drive ready
- RUN: Drive running
- SOC: Controlled output cut in progress
- TUN: Auto-tuning in progress
- USA: Undervoltage alarm

The first time the drive is powered on, the user is automatically guided through the menus as far as [1. DRIVE MENU].
The parameters in the [1.1 SIMPLY START] submenu must be configured and auto-tuning performed before the motor is started.

Graphic display terminal

Only the [1.1 SIMPLY START] menu is described in this document. For more information about the content of the other menus, consult the Programming Manual on the CD-ROM supplied with the drive.

Displayed for 3 seconds following power-up

Switches to [5 LANGUAGE] menu automatically.
Select the language and press ENT.

Switches to [1 DRIVE MENU]
(consult the Programming Manual on the CD-ROM supplied with the drive)
(consult the Programming Manual on the CD-ROM supplied with the drive)
Select the access level and press ENT.

Press ESC to return to [MAIN MENU]

[1.1 SIMPLY START] (SIM-) menu

A DANGER

UNINTENDED EQUIPMENT OPERATION

- Changes to parameters in other menus may change the [1.1 SIMPLY START] (SIM-) parameter settings.
- Read and understand the ATV71 Programming Manual before configuring parameter values.

Failure to follow these instructions will result in death or serious injury.
The [1.1 SIMPLY START] (SIM-) menu can be used to quickly configure key parameters to get the drive and motor running. Modifying parameters in other menus may modify the parameter settings in the [1.1 SIMPLY START] (SIM-) menu. As an example, configuration of motor parameters in [1.4 MOTOR CONTROL] (drC-) will be reflected in the [1.1 SIMPLY START] (SIM-) parameters. The [1.1-SIMPLY START] (SIM-) menu can be used for quick startup, which is sufficient for many applications.

Note: The parameters of the [1.1 SIMPLY START] (SIM-) menu must be entered in the order in which they appear, as the later ones are dependent on the first ones.
For example [2/3 wire control] (tCC) must be configured before any other parameters.

Macro configuration

Selecting a macro configuration allows you to quickly configure the drive with settings that are suitable for a specific application. Selecting a macro configuration assigns the Inputs/Outputs in this macro configuration.

Input/ output	$\begin{array}{\|l} \hline \text { [Start/ } \\ \text { Stop] } \\ \hline \end{array}$	[M. handling]	$\begin{aligned} & \hline \text { [Gen. } \\ & \text { Use] } \end{aligned}$	[Hoisting]	[PID regul.]	[Network C.]	[Mast./ slave]
Al1	[Ref. 1 channel] (PID reference)	[Ref.2 channel] ([Ref. 1 channel] via the bus)	[Ref. 1 channel]				
Al2	[No]	[Summing ref. 2]	[Summing ref. 2]	[No]	[PID feedback]	[No]	[Torque reference]
AO1	[Motor freq.]	[Sign. torque]					
R1	[No drive flt]	[No drive flt]	[No drive fit]	[No drive fit]	[No drive fit]	[No drive fit]	[No drive flt]
R2	[No]	[No]	[No]	[Brk control]	[No]	[No]	[No]
$\begin{array}{\|l\|} \hline \text { LI1 } \\ \text { (2-wire) } \end{array}$	[Forward]						
$\begin{array}{\|l\|} \hline \text { LI2 } \\ \hline \text { (2-wire) } \end{array}$	[Reverse]						
$\begin{array}{\|l\|} \hline \text { LI3 } \\ \hline \text { (2-wire) } \\ \hline \end{array}$	[No]	[2 preset speeds] speeds]	[Jog]	[Fault reset]	[PID integral reset]	[Ref. 2 switching]	[Trq/spd switching]
$\begin{array}{\|l\|} \hline \text { LI4 } \\ \hline \text { (2-wire) } \\ \hline \end{array}$	[No]	[4 preset speeds]	[Fault reset]	[External fault]	$\begin{array}{\|l} \hline \text { [2 preset PID } \\ \text { ref.] } \\ \hline \end{array}$	[Fault reset]	[Fault reset]
$\begin{array}{\|l\|} \hline \text { LI5 } \\ \text { (2-wire) } \\ \hline \end{array}$	[No]	[8 preset speeds]	[Torque limitation]	[No]	[4 preset PID ref.]	[No]	[No]
$\begin{array}{\|l\|} \hline \text { LI6 } \\ \text { (2-wire) } \\ \hline \end{array}$	[No]	[Fault reset]	[No]				
$\begin{aligned} & \hline \text { LI1 } \\ & \text { (3-wire) } \\ & \hline \end{aligned}$	Stop						
$\begin{aligned} & \text { LI2 } \\ & \text { (3-wire) } \end{aligned}$	[Forward]						
$\begin{aligned} & \hline \text { LI3 } \\ & \text { (3-wire) } \\ & \hline \end{aligned}$	[Reverse]						
$\begin{aligned} & \hline \text { LI4 } \\ & \hline \text { (3-wire) } \\ & \hline \end{aligned}$	[No]	$\begin{aligned} & \hline \text { [2 preset } \\ & \text { speeds] } \\ & \hline \end{aligned}$	[Jog]	[Fault reset]	[PID integral reset]	[Ref. 2 switching]	$\begin{aligned} & \hline \text { [Trq/spd } \\ & \text { switching] } \end{aligned}$
$\begin{aligned} & \hline \text { LI5 } \\ & \text { (3-wire) } \\ & \hline \end{aligned}$	[No]	[4 preset speeds]	[Fault reset]	[External fault]	$\begin{aligned} & \hline \text { [2 preset PID } \\ & \text { ref.] } \\ & \hline \end{aligned}$	[Fault reset]	[Fault reset]
$\begin{aligned} & \hline \text { LI6 } \\ & \text { (3-wire) } \\ & \hline \end{aligned}$	[No]	[8 preset speeds]	[Torque limitation]	[No]	$\begin{aligned} & \text { [4 preset PID } \\ & \text { ref.] } \\ & \hline \end{aligned}$	[No]	[No]

In 3-wire control, the assignment of inputs LI1 to LI6 shifts.

Factory settings.
Note: The settings can be modified, adjusted and reassigned. Consult the ATV71 Programming Manual on the CD-ROM supplied with the drive.

[1.1 SIMPLY START] (SIM-) menu

The following table describes the codes, adjustment range, and factory settings.

[1.1 SIMPLY START] (SIM-) menu

Code	Name/Description ${ }^{\text {a }}$ Adjustment range	Factory setting
$\begin{array}{r} b F r \\ 5 \square \\ 5 \square \end{array}$	[Standard mot. freq] [50 Hz IEC] (50): IEC [60 Hz NEMA] (60): NEMA This parameter modifies the presets of the following parameters: [Rated motor power] (nPr), [Rated motor volt.] (UnS), [Rated mot. current] (nCr), [Rated motor freq.] (FrS), [Rated motor speed] (nSP) and [Max frequency] (tFr) below, [Mot. therm. current] (ItH) page 35, [High speed] (HSP) page 35.	
$n P r$	Rated motor power given on the nameplate, in kW if [Standard mot. freq] (bFr) $=$ [50 Hz IEC] (50), in HP if [Standard mot. freq] (bFr) $=[60 \mathrm{~Hz}$ NEMA] (60).	
$U \cap 5$	\square [Rated motor volt.] 200 to 480 V Rated motor voltage given on the nameplate.	400 or 460 V according to [Standard mot. freq] (bFr)
$n[r$	\square [Rated mot. current] 0.25 to $1.5 \ln$ (1) Rated motor current given on the nameplate.	According to drive rating and [Standard mot. freq] (bFr)
$F r 5$	\square [Rated motor freq.] $10 \text { to } 500 \text { or } 1600 \mathrm{~Hz}$ according to rating Rated motor frequency given on the nameplate. The factory setting is 50 Hz , or preset to 60 Hz if [Standard mot. freq] (bFr) is	$50 \mathrm{~Hz}$ $\text { to } 60 \mathrm{~Hz} \text {. }$
$\square 5 P$	\square [Rated motor speed] 0 to 96,000 RPM Rated motor speed given on the nameplate. 0 to 9999 RPM then 10.00 to 96.00 kRPM on the integrated display terminal. If, rather than the rated speed, the nameplate indicates the synchronous spee or as a \%, calculate the rated speed as follows: - Rated speed $=$ Synchronous speed $x \frac{100-\text { slip as a } \%}{100}$ - $\stackrel{\text { or }}{\text { Rated }}$ speed $=$ Synchronous speed $x \frac{50-\text { slip in } \mathrm{Hz}}{50}(50 \mathrm{~Hz}$ motor $)$ or - Rated speed $=$ Synchronous speed $x \frac{60-\text { slip in Hz }}{60}$ (60 Hz motor	According to drive rating and the slip in Hz
$t F_{r}$	\square [Max frequency] $10 \text { to } 1600 \mathrm{~Hz}$ The factory setting is 60 Hz , or preset to 72 Hz if [Standard mot. freq] (bFr) is The maximum value is limited by the following conditions: - It must not exceed 10 times the value of [Rated motor freq.] (FrS). - Values between 500 Hz and 1 Hz are only possible in V/F control and for por $37 \mathrm{~kW}(50 \mathrm{HP})$ for the ATV71Weeee. In this case configure [Motor contro [Max frequency] (tFr).	60 Hz set to 60 Hz . wers limited to ype] (Ctt) before

(1) In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.

［1．1 SIMPLY START］（SIM－）menu

Code	Name／Description \quad Factory setting
tUn	
	ADANGER HAZARD OF ELECTRIC SHOCK，EXPLOSION，OR ARC FLASH －During auto－tuning，the motor operates at rated current． －Do not service the motor during auto－tuning． Failure to follow these instructions will result in death or serious injury．
	ADANGER UNINTENDED EQUIPMENT OPERATION －The following motor parameters must be correctly configured before starting auto－ tuning：［Rated motor volt．］（UnS），［Rated motor freq．］（FrS），［Rated mot．current］（nCr）， ［Rated motor speed］（nSP），and［Rated motor power］（nPr）． －If one or more of these parameters is modified after auto－tuning has been performed， Auto－tuning（tUn）will be set to［ No ］and the procedure must be repeated． Failure to follow these instructions will result in death or serious injury．
$\begin{array}{r} \cap \square \\ Y E 5 \\ \text { d } \square E \end{array}$	［ No ］（ nO ）：Auto－tuning not performed． ［Yes］（YES）：Auto－tuning is performed as soon as possible，then the parameter automatically changes to［Done］（dOnE）． ［Done］（dOnE）：Use of the values given the last time auto－tuning was performed． Important： －It is essential that the motor parameters（［Rated motor volt．］（UnS），［Rated motor freq．］（FrS），［Rated mot．current．］（nCr），［Rated motor speed］（nSP），［Rated motor power］（ nPr ））are configured correctly before starting auto－tuning． If at least one of these parameters is modified after auto－tuning has been performed， ［Auto－tuning］（tUn）will return to［ No ］（ nO ）and must be repeated． －Auto－tuning is only performed if no stop command has been activated．If a＂freewheel stop＂or＂fast stop＂function has been assigned to a logic input，this input must be set to 1 （active at 0 ）． －Auto－tuning takes priority over any run or prefluxing commands，which will be taken into account after the auto－tuning sequence． －If auto－tuning is unsuccessful，the drive displays $[\mathrm{No}](\mathrm{nO})$ and，depending on the configuration of［Autotune fault mgt］（tnL）（consult the CD－ROM supplied with the drive），may switch to［Auto－tuning］（tnF）mode． －Auto－tuning may take 1 to 2 seconds．Do not interrupt；wait for the display to change to＂［Done］（dOnE）＂or＂ $\mathrm{No} \mathrm{No}(\mathrm{nO})$＂．
$t \cup 5$	\square［Auto－tuning status］${ }^{\square}$［ ${ }^{\text {a }}$［Not done］（tAb）
ヒ 月 PEnd PrロL FRIL $\forall \square \cap E$	（for information only，cannot be modified） ［Not done］（ tAb ）：The default stator resistance value is used to control the motor． ［Pending］（PEnd）：Auto－tuning has been requested but not yet performed． ［In Progress］（PrOG）：Auto－tuning in progress． ［Failed］（FAIL）：Auto－tuning was unsuccessful． ［Done］（dOnE）：The stator resistance measured by the auto－tuning function is used to control the motor．

[1.1 SIMPLY START] (SIM-) menu

Code	Name/Description ${ }^{\text {a }}$ (Factory setting
PHr	\square [Output Ph rotation] ${ }^{\square}$ [${ }^{\text {a }}$ [ABC] (AbC)
$\begin{aligned} & \text { Ab }[\\ & \text { ACb } \end{aligned}$	[ABC] (AbC): Forward [ACB] (ACb): Reverse This parameter can be used to reverse the direction of rotation of the motor without reversing the wiring.

Parameters that can be changed while the drive is running or stopped

Code	Name/Description		Factory setting
It H	\square [Mot. therm. current]	0 to $1.5 \ln$ (1)	According to drive rating
	Motor thermal overload current, to be set to the rated current indicated on the nameplate.		
HL[\square [Acceleration]	0.1 to 999.9 s	3.0 s
	Time to accelerate from 0 to the [Rated motor freq.] (FrS) (page 33). Make sure that this value is compatible with the inertia being driven.		
dE [\square [Deceleration]	0.1 to 999.9 s	3.0 s
	Time to decelerate from the [Rated motor freq.] (FrS) (page 33) to 0. Make sure that this value is compatible with the inertia being driven.		
LSP	\square [Low speed]		
	Motor frequency at minimum reference, can be set between 0 and [High speed] (HSP).		
H5P	\square [High speed]		50 Hz
	Motor frequency at maximum reference, can be set between [Low speed] (LSP) and [Max frequency] (tFr). The factory setting changes to 60 Hz if [Standard mot. freq]$(\mathrm{bFr})=[60 \mathrm{~Hz}](60) .$		

(1) In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.

Detected faults - causes - remedies

Drive does not start, no detected fault code displayed

- If the display does not light up, check the power supply to the drive.
- If the drive displays [Freewheel] (nSt) or [Fast stop] (FSt): The Fast Stop and Freewheel functions will keep the drive from starting if the corresponding logic inputs are not powered up. This is normal-these functions are active at zero so that the drive will stop if there is a wire break.
- Make sure that the run command input or inputs are activated in accordance with the selected control mode: - [2/3 wire control] (tCC) parameter and [2 wire type] (tCt) parameter (page 32).

A DANGER

LOSS OF PERSONNEL AND EQUIPMENT PROTECTION FEATURES

- Enabling fault inhibition (InH) will disable drive protection features.
- InH should not be enabled for typical applications of this equipment.
- InH should be enabled only in extraordinary situations where a thorough risk analysis demonstrates that the presence of adjustable speed drive protection features poses a greater risk than personnel injury or equipment damage.

Failure to follow these instructions will result in death or serious injury.

Conditions requiring a power reset

The following table lists the conditions where the drive cannot be reset automatically. The drive can be reset by cycling power to the drive after the cause of the condition has been removed. With AI2F, EnF, SOF, SPF and tnF conditions, the drive can also be reset remotely by means of a logic input or control bit (consult the Programming Manual on the CD-ROM supplied with the drive).
Detection of EnF, InFA, InFb, SOF, SPF and tnF conditions can be inhibited by the user, and the drive can be reset remotely by means of a logic input or control bit (consult the Programming Manual on the CD-ROM supplied with the drive).

Code	Name	Probable cause	Remedy
A İF	[Al2 input]	- Non-conforming signal on analog input AI2	- Check the wiring of analog input AI2 and the value of the signal.
$b \square F$	[DBR overload]	- The braking resistor is under excessive stress.	- Check the size of the resistor and wait for it to cool down. - Check parameters [DB Resistor Power] (brP) and [DB Resistor value] (brU) (consult the CD-ROM supplied with the drive).
$b \cup F$	[DB unit sh.circuit]	- Short-circuit output from braking unit	- Check the wiring of the braking unit and the resistor. - Check the braking resistor.
[rFI	[Precharge]	- Charging relay control or charging resistor damaged	- Turn the drive off and then back on again - Check the internal connections - Inspect/repair the drive
[rF]	[Thyr. soft charge]	- DC bus charging (thyristors)	
EEF I	[Control Eeprom]	- Internal memory, control card	- Check the environment (electromagnetic compatibility) - Turn off, reset, return to factory settings - Inspect/repair the drive
E E F	[Power Eeprom]	- Internal memory, power card	
$E \cap F$	[Encoder]	- Encoder feedback	- Check [Number of pulses] (PGI) and [Encoder type] (EnS) (consult the CD-ROM supplied with the drive) - Check that the encoder's mechanical and electrical operation, its power supply and connections are correct - Check and, if necessary, reverse the direction of rotation of the motor ([Output Ph rotation] (PHr) parameter on page 35) or the encoder signals
F [F I	[Out. contact. stuck]	- The output contactor remains closed although the conditions for opening have been met	- Check the contactor and its wiring - Check the feedback circuit

Detected faults - causes - remedies

Conditions requiring a power reset (cont.)

Code	Name	Probable cause	Remedy
$H d F$	[IGBT desaturation]	- Short-circuit or grounding at the drive output	- Check the cables connecting the drive to the motor, and the motor's insulation - Perform the diagnostic tests via the $[1.10$ DIAGNOSTICS] menu
ILF	[internal com. link]	- Communication between option card and drive	- Check the environment (electromagnetic compatibility) - Check the connections - Check that no more than 2 option cards (max. permitted) have been installed on the drive - Replace the option card - Inspect/repair the drive
InF I	[Rating error]	- The power card is different from the card stored	- Check the reference of the power card
$\operatorname{InF} 2$	[Incompatible PB]	- The power card is incompatible with the control card	- Check the reference of the power card and its compatibility
InF F	[Internal serial link]	- Communication between the internal cards	- Check the internal connections - Inspect/repair the drive
InF 4	$\begin{aligned} & \text { [Internal MFG } \\ & \text { area] } \end{aligned}$	- Internal data inconsistent	- Recalibrate the drive (performed by Schneider Electric Product Support)
InF 5	[Internal-option]	- The option installed in the drive is not recognized	- Check the reference and compatibility of the option
InF 7	[Internal-hard init.]	- Initialization of the drive is incomplete	- Turn off and reset
InFB	[Internal-ctrl supply]	- The control section power supply is incorrect	- Check the control section power supply
InF9	[Internal-I measure]	- The current measurements are incorrect	- Replace the current sensors or the power card - Inspect/repair the drive
InFA	[Internal-mains circuit]	- The input stage is not operating correctly	- Perform the diagnostic tests via the [1.10 DIAGNOSTICS] menu - Inspect/repair the drive
InFb	[Internal-Th. sensor]	- The drive temperature sensor is not operating correctly	- Replace the temperature sensor - Inspect/repair the drive
InF	[Internal-time meas.]	- Electronic time measurement component	- Inspect/repair the drive
InFE	[internal- CPU]	- Internal microprocessor	- Turn off and reset Inspect/repair the drive
प[F	[Overcurrent]	- Motor parameters not correct - Inertia or load too high - Mechanical locking	- Check the parameters - Check the size of the motor/drive/load - Check the state of the mechanism
PrF	[Power removal]	- The drive's Power Removal function	- Inspect/repair the drive
$5[F]$	[Motor short circuit]	- Short-circuit or grounding at the drive output - Significant earth leakage current at the drive output if several motors are connected in parallel	- Check the cables connecting the drive to the motor, and the motor insulation - Perform the diagnostic tests via the [1.10 DIAGNOSTICS] menu - Reduce the switching frequency - Connect chokes in series with the motor
5 [F2	[Impedant sh. circuit]		
$5[$ F $]$	[Ground short circuit]		

Detected faults - causes - remedies

Conditions requiring a power reset (cont.)

Code	Name	Probable cause	Remedy
$5 \square F$	[Overspeed]	- Instability or driving load too high	- Check the motor, gain and stability parameters - Add a braking resistor - Check the size of the motor/drive/load
$5 P F$	[Speed fdback loss]	- Encoder feedback signal missing	- Check the wiring between the encoder and the drive - Check the encoder
$t \cap F$	[Auto-tuning]	- Special motor or motor whose power is not suitable for the drive - Motor not connected to the drive	- Check that the motor/drive are compatible - Check that the motor is present during autotuning - If an output contactor is being used, close it during auto-tuning

Detected faults - causes - remedies

Auto-reset conditions (customer configured), after the cause has been removed

DANGER

LOSS OF PERSONNEL AND EQUIPMENT PROTECTION FEATURES

- Enabling fault inhibition (InH) will disable drive protection features.
- InH should not be enabled for typical applications of this equipment.
- InH should be enabled only in extraordinary situations where a thorough risk analysis demonstrates that the presence of adjustable speed drive protection features poses a greater risk than personnel injury or equipment damage.

Failure to follow these instructions will result in death or serious injury.

The drive can also be reset by turning the drive off then on again, or by means of a logic input or control bit (consult the Programming Manual on the CD-ROM supplied with the drive).
APF, CnF, COF, EPF1, EPF2, FCF2, LFF2, LFF3, LFF4, nFF, ObF, OHF, OLC, OLF, OPF1, OPF2, OSF, OtF1, OtF2, OtFL, PHF, PtF1, PtF2, PtFL, SLF1, SLF2, SLF3, SPIF, SSF, tJF, and ULF conditions can be inhibited and the drive reset remotely by means of a logic input or control bit (consult the Programming Manual on the CD-ROM supplied with the drive).

Code	Name	Probable cause	Remedy
APF	[Application fault]	- Controller Inside card	- Please refer to the card documentation
CnF	[Com. network]	- Interruption in communication	- Check the environment (electromagnetic compatibility) - Check the wiring - Check the time-out - Replace the option card - Inspect/repair the drive
L पF	[CAN com.]	- Interruption in communication on the CANopen bus	- Check the communication bus - Check the time-out - Refer to the CANopen User's Manual
EPF I	[External flt-LI/Bit]	- An external device, depending on user	- Correct the external device
EPF2	[External fault com.]	- Communication network	- Correct the communication network and reset
F[F2	[Out. contact. open.]	- The output contactor remains open although the conditions for closing have been met	- Check the contactor and its wiring - Check the feedback circuit
$L[F$	[Line contactor]	- The drive is not powering up even though [Mains V. time out] (LCt) has elapsed.	- Check the contactor and its wiring - Check the time-out - Check the line/contactor/drive connection
$\begin{array}{llll} \angle & F & F & 3 \\ L & F & 3 & 3 \\ L & F & F & 4 \end{array}$	[Al2 4-20 mA loss] [A13 4-20 mA loss] [Al4 4-20 mA loss]	- Loss of the 4-20 mA reference on analog input AI2, AI3 or AI4	- Check the connection on the analog inputs
$n F F$	[No Flow fault]	- Zero fluid	- Check and correct cause of low flow - Check the zero fluid detection parameters (consult the CD-ROM supplied with the drive)
ロレF	[Overbraking]	- Braking too sudden or driving load	- Increase the deceleration time - Install a braking resistor if necessary - Activate the [Dec ramp adapt.] (brA) function (consult the CD-ROM supplied with the drive), if it is compatible with the application
$\square H F$	[Drive overheat]	- Drive temperature too high	- Check the motor load, the drive ventilation and the ambient temperature. Wait for the drive to cool down before restarting.

Detected faults - causes - remedies

Auto-reset conditions (customer configured), after the cause has been removed (cont.)

Code	Name	Probable cause	Remedy
$\square L$	[Proc.Overload FIt]	- Process overload	- Check and remove the cause of the overload - Check the parameters of the [PROCESS UNDERLOAD] (OLd-) function (consult the CD-ROM supplied with the drive).
$\square L F$	[Motor overload]	- Triggered by excessive motor current	- Check the setting of the motor thermal current, check the motor load. Wait for the drive to cool down before restarting.
DPF I	[1 motor phase loss]	- Loss of one phase at drive output	- Check the connections from the drive to the motor
$\triangle P F 2$	[3 output phase loss]	- Motor not connected or motor power too low - Output contactor open - Instantaneous instability in the motor current	- Check the connections from the drive to the motor - If an output contactor is being used, consult the CD-ROM supplied with the drive - Test on a low power motor or without a motor: In factory settings mode, output phase loss detection is active [Output Phase Loss] (OPL) = [Yes] (YES). To check the drive in a test or maintenance environment without having to switch to a motor with the same rating as the drive (particularly useful in the case of highpower drives), deactivate output phase loss detection [Output phase loss] (OPL) $=[\mathrm{No}](\mathrm{nO})$. - Check and optimize the [Rated motor volt.] (UnS) and [Rated mot. current.] (nCr) parameters and perform an [Autotuning] (tUn) operation.
प5F	[Mains overvoltage]	- Line voltage too high - Disturbed line supply	- Check the line voltage
DEF I	[PTC1 overheat]	- Overheating of the PTC1 probes detected	- Check the motor load and motor size - Check the motor ventilation
ロヒF	[PTC2 overheat]	- Overheating of the PTC2 probes detected	- Wait for the motor to cool before restarting - Check the type and state of the PTC probes
DEFL	[PTC=LI6 overheat]	- Overheating of PTC probes detected on input LI6	
PEF I	[PTC1 probe]	- PTC1 probes open or short-circuited	- Check the PTC probes and the wiring between them and the motor/drive
PEF	[PTC2 probe]	- PTC2 probes open or short-circuited	
PEFL	[LI6=PTC probe]	- PTC probes on input LI6 open or short-circuited	
$5[F 4$	[IGBT short circuit]	- Power component	- Perform a test via the [1.10 DIAGNOSTICS] menu - Inspect/repair the drive
5 [F5	[Motor short circuit]	- Short-circuit at drive output	- Check the cables connecting the drive to the motor, and the motor's insulation - Perform a test via the [1.10 DIAGNOSTICS] menu - Inspect/repair the drive
5LF I	[Modbus com.]	- Interruption in communication on the Modbus bus	- Check the communication bus - Check the time-out - Refer to the Modbus User's Manual

Detected faults - causes - remedies

Auto-reset conditions (customer configured), after the cause has been removed (cont.)

Code	Name	Probable cause	Remedy
5LF 己	[PowerSuite com.]	- Communication with PowerSuite	- Check the PowerSuite connecting cable - Check the time-out
5LF	[HMI com.]	- Communication with the graphic display terminal	- Check the terminal connection - Check the time-out
5P IF	[PI Feedback]	- PID feedback below lower limit	- Check the PID function feedback - Check the PID feedback supervision threshold and time delay (consult the CD-ROM supplied with the drive)
55 F	[Torque/current lim]	- Switch to torque limitation	- Check if there are any mechanical problems - Consult the CD-ROM supplied with the drive
$t J F$	[IGBT overheat]	- Drive overheated	- Check the size of the load/motor/drive - Reduce the switching frequency - Wait for the motor to cool before restarting
$U L F$	[Proc. Underload FIt]	- Process underload	- Check and remove the cause of the underload - Consult the CD-ROM supplied with the drive

Detected faults - causes - remedies

Automatic drive reset after the detected fault or condition is cleared

A DANGER

LOSS OF PERSONNEL AND EQUIPMENT PROTECTION FEATURES

- Enabling fault inhibition (InH) will disable drive protection features.
- InH should not be enabled for typical applications of this equipment.
- InH should be enabled only in extraordinary situations where a thorough risk analysis demonstrates that the presence of adjustable speed drive protection features poses a greater risk than personnel injury or equipment damage.

Failure to follow these instructions will result in death or serious injury.

The USF fault can be inhibited and cleared remotely by means of a logic input or control bit ([Fault inhibit assign.] (InH) parameter.

Code	Name	Probable cause	Remedy
[F F	[Incorrect config.]	- Changed or removed option card - The current configuration is inconsistent	- Check that there are no card errors. - In the event of the option card being changed/removed deliberately, see the remarks below. - Return to factory settings or retrieve the backup configuration, if it is valid.
$[F]$	[Invalid config.]	- Invalid configuration The configuration loaded in the drive via the bus or communication network is inconsistent.	- Check the configuration loaded previously - Load a compatible configuration
H [F	[Cards pairing]	- The [CARDS PAIRING] (PPI-) function has been configured and a drive card has been changed	- In the event of a card error, reinsert the original card - Confirm the configuration by entering the [Pairing password] (PPI) if the card was changed deliberately.
PHF	[Input phase loss]	- Drive incorrectly supplied or a fuse blown - Failure of one phase - 3-phase ATV71 drive used on a single-phase line supply - Unbalanced load This protection only operates with the drive on load	- Check the power connection and the fuses - Use a 3-phase line - Disable the fault detection feature [Input phase loss] (IPL) $=[\mathrm{No}](\mathrm{nO})$
Pref	[Power Ident]	- The [Power Identification] (Prt) parameter is incorrect - Control card replaced by a control card configured on a drive with a different rating	- Enter the correct parameter (reserved for Schneider Electric product support) - Check that there are no card errors. - In the event of the control card being changed deliberately, see the remarks below
U 5 F	[Undervoltage]	- Line supply too low - Transient voltage dip - Damaged pre-charge resistor	- Check the voltage and the parameters of [UNDERVOLTAGE MGT] (USb-) - Replace the pre-charge resistor - Inspect/repair the drive.

Detected faults - causes - remedies

Option card changed or removed

When an option card is removed or replaced by another, the drive locks in [Incorrect config.] (CFF) mode on powerup. If the card has been deliberately changed or removed, the trip condition can be cleared by pressing the ENT key twice, which causes the factory settings to be restored for the parameter groups affected by the card. These are as follows:

Card replaced by a card of the same type

- I/O cards: [Drive menu] (drM)
- Encoder cards: [Drive menu] (drM)
- Communication cards: Only the parameters that are specific to communication cards
- Controller Inside cards: [Prog. card menu] (PLC)

Card removed (or replaced by a different type of card)

- I/O card: [Drive menu] (drM)
- Encoder card: [Drive menu] (drM)
- Communication card: [Drive menu] (drM) and parameters that are specific to communication cards
- Controller Inside cards: [Drive menu] (drM) and [Prog. card menu] (PLC)

Control card changed

When a control card is replaced by a control card configured on a drive with a different rating, the drive locks in [Power Ident] (PrtF) mode on power-up. If the card has been deliberately changed, the trip condition can be cleared by modifying the [Power Identification](Prt) parameter which causes all the factory settings to be restored.

Altivar ${ }^{\circledR}$ is a registered trademark of Schneider Electric. Other trademarks used herein are the property of their respective owners.

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

Schneider Electric

8001 Knightdale Blvd.
Knightdale, NC 27545 USA
1-888-SquareD (1-888-778-2733)
www.schneider-electric.us

