Product Environmental Profile

UPS Network Management Card

Product overview

The main purpose of the UPS Network Management Card product range is to permit secure remote monitoring and control of individual UPSs by connecting them to a network.

The functional unit is the provision of remote monitoring and control of one UPS for 10 years via connection to a network.

This range consists of UPS Network Management Cards that are installed into uninterruptible power supplies (UPSs) and other Schneider Electric products to connect these products to a network and allow users to monitor and control the products via web browser, command line interface, or SNMP. Remote monitoring and control of these products enables users to detect infrastructure problems as they occur eliminating the need to dispatch technicians to remote locations. The product range includes products with the following model numbers:

AP95XX, AP96XX, AP98XX, where XX is any number between 00 and 99.

The representative product used for the analysis is the AP9630 UPS Network Management Card 2.

The environmental impacts of this referenced product are representative of the impacts of the other products of the range which are developed with a similar technology.

The environmental analysis was performed in conformity with ISO 14040.

Constituent materials

The mass of the product range is from 450 g and 910 g including packaging. It is 750 g for the AP9630 UPS Network Management Card 2 representative product. The constituent materials are distributed as follows:

Substance assessment

Products of this range are designed in conformity with the requirements of the European RoHS Directive 2011/65/EU and do not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive

Details of ROHS and REACH substances information are available on the Schneider-Electric <u>Green Premium</u> website . (http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium/green-premium.page)

Manufacturing

The UPS Network Management Card product range is manufactured at a Schneider Electric production site on which an ISO14001 certified environmental management system has been established.

Distribution

The weight and volume of the packaging have been optimized, based on the European Union's packaging directive.

The AP9630 UPS Network Management Card 2 packaging weight is *441 g*. It consists of 227 g of paper, 120 g of polyethylene film and 94 g of card board.

The product distribution flows have been optimised by setting up local distribution centres close to the market areas.

Use

The products of the UPS Network Management Card product range do not generate environmental pollution (noise, emissions) requiring special precautionary measures in standard use.

The electrical power consumption depends on the conditions under which the product is implemented and used. The electrical power consumed by the UPS Network Management Card product range is between 1.54 W and 5.4 W. It is 2.04 W over the weighted average usage, which accounts for 100% of the AP9630 UPS Network Management Card 2 product life.

The product range does not require special maintenance operations.

End of life

At end of life, the products in the UPS Network Management Card range have been optimized to decrease the amount of waste and allow recovery of the product components and materials.

This product range contains a printed circuit board ≥10 cm2 that should be separated from the stream of waste so as to optimize end-of-life treatment by special treatments. The location of these components and other recommendations are given in the End of Life Instruction document which is available for this product range on the Schneider-Electric Green Premium website Green Premium website

(http://www2.schneider-electric.com/sites/corporate/en/products-services/green-premium/green-premium.page).

The recyclability potential of the products has been evaluated using the "ECO DEEE recyclability and recoverability calculation method" (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME).

According to this method, the potential recyclability ratio without packaging is: 14%.

As described in the recyclability calculation method this ratio includes only metals and plastics which have proven industrial recycling processes.

Environmental impacts

Life cycle assessment has been performed on the following life cycle phases: Materials and Manufacturing (M), Distribution (D), Installation (I) Use (U), and End of life (E).

Modeling hypothesis and method:

- The calculation was performed on the AP9630 UPS Network Management Card 2 representative product.
- Product packaging is included.
- Installation components: no special components included.
- Scenario for the Use phase: this product range is not covered by a PSR. However, given that the product is installed within UPSs and it operates at a constant load whenever the UPS is in use, the electricity use was determined via measurement of the load, within a UPS where the product was installed, minus the load of the UPS operating without the product. The difference in power is calculated to be the input of the AP9630 UPS Network Management Card 2. The assumed service

lifetime is 10 years based on the type of UPSs that typically utilize this product and the lifespan for those size UPSs as outlined by PSR0010. The use scenario is based on the use of the applicable UPS containing the product.

- The geographical representative area for the assessment is European and the electrical power model used for calculation is ELCD_Electricity_mix_<1kV_EU-27 model.
- End of life impacts are based on a worst case transport distance to the recycling plant (1000km)

Presentation of the product environmental impacts

Environmental indicators	Unit	For UPS Network Management Card 2, commercial reference AP9630					
		S = M + D + I + U + E	М	D	I	U	ш
Air Acidification (AA)	g H+ eq	2.49E+01	2.07E+00	1.06E-02	0.00E+00	2.28E+01	9.82E-03
Air toxicity (AT)	m³	2.91E+07	2.67E+06	1.57E+04	0.00E+00	2.64E+07	1.46E+04
Energy Depletion (ED)	MJ	2.27E+03	1.33E+02	8.01E-01	0.00E+00	2.14E+03	7.05E-01
Global Warming Potential (GWP)	g CO ₂ eq.	1.13E+05	7.79E+03	5.68E+01	0.00E+00	1.06E+05	5.00E+01
Hazardous Waste Production (HWP)	Kg	1.96E-01	1.77E-01	7.03E-08	0.00E+00	1.81E-02	6.19E-08
Ozone Depletion Potential (ODP)	g CFC-11 eq.	2.50E-02	9.45E-04	1.08E-07	0.00E+00	2.41E-02	9.48E-08
Photochemical Ozone Creation Potential (POCP)	g C₂H₄ eq.	9.73E+00	3.18E+00	1.27E-02	0.00E+00	6.52E+00	1.25E-02
Raw Material Depletion (RMD)	Y-1	9.88E-14	9.74E-14	1.16 E- 18	0.00E+00	1.42E-15	1.02E-18
Water Depletion (WD)	dm3	3.44E+02	6.90E+01	5.90E- <mark>03</mark>	0.00E+00	2.75E+02	5.19E-03
Water Eutrophication (WE)	g PO₄³⁻ eq.	1.60E+00	5.94E-01	1.06E-04	0.00E+00	1.00E+00	9.29E-05
Water Toxicity (WT)	m³	4.91E+01	2.07E+00	2.43E-02	0.00E+00	4.70E+01	2.14E-02

Life cycle assessment has been performed with the EIME software (Environmental Impact and Management Explorer), version 5 and with its database version CODDE-2015-04.

The use phase is the life cycle phase which has the greatest impact on the majority of environmental indicators.

This product range benefits from an eco-design process which is utilized in the design of all products. A design scorecard is generated for all new products to assist engineers in deploying eco-design and then comparing the design features of the new product against the previous version of the product. which help reduce its impacts on the environment.

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range: For the HWP and RMD impact categories the impacts of other products in this family may be proportional extrapolated based on the ratio of the product mass to that of the reference product mass. For the WE impact category half of the impact may be proportional extrapolated based on the ratio of the product mass to that of the reference product mass and half may be proportional extrapolated based on the ratio of the product electricity use to that of the reference product. The remaining impact categories may be proportional extrapolated based on the ratio of the product electricity use to that of the reference product. The impacts for installation are zero across all products in the family.

System approach

As the products of the range are designed in accordance with the European RoHS Directive 2011/65/EU, they can be incorporated without any restriction in an assembly or an installation subject to this Directive.

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Glossary

Air Acidification (AA)	The acid substances present in the atmosphere are carried by rain. A high level of acidity in the rain can cause damage to forests. The contribution of acidification is calculated using the acidification potentials of the substances concerned and is expressed in mode equivalent of H ⁺ .
Air Toxicity (AT)	This indicator represents the air toxicity in a human environment. It takes into account the usually accepted concentrations for several gases in the air and the quantity of gas released over the life cycle. The indication given corresponds to the air volume needed to dilute these gases down to acceptable concentrations.
Energy Depletion (ED)	This indicator gives the quantity of energy consumed, whether it is from fossil, hydroelectric, nuclear or other sources. It takes into account the energy from the material produced during combustion. It is expressed in MJ.
Global Warming (GW)	The global warming of the planet is the result of the increase in the greenhouse effect due to the sunlight reflected by the earth's surface being absorbed by certain gases known as "greenhouse-effect" gases. The effect is quantified in gram equivalent of CO ₂ .
Hazardous Waste Production (HWP)	This indicator quantifies the quantity of specially treated waste created during all the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the production of electrical power, etc. It is expressed in kg.
Ozone Depletion (OD)	This indicator defines the contribution to the phenomenon of the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalent of CFC-11.
Photochemical Ozone Creation (POC)	This indicator quantifies the contribution to the "smog" phenomenon (the photochemical oxidation of certain gases which generates ozone) and is expressed in gram equivalent of ethylene (C ₂ H ₄).
Raw Material Depletion (RMD)	This indicator quantifies the consumption of raw materials during the life cycle of the product. It is expressed as the fraction of natural resources that disappear each year, with respect to all the annual reserves of the material.
Water Depletion (WD)	This indicator calculates the volume of water consumed, including drinking water and water from industrial sources. It is expressed in dm ³ .
Water Eutrophication (WE)	Eutrophication is a natural process defined as the enrichment in mineral salts of marine or lake waters or a process accelerated by human intervention, defined as the enrichment in nutritive elements (phosphorous compounds, nitrogen compounds and organic matter). This indicator represents the water eutrophication of lakes and marine waters by the release of specific substances in the effluents. It is expressed in grams equivalency of PO43-(phosphate).
Water Toxicity (WT)	This indicator represents the water toxicity. It takes into account the usually accepted concentrations for several substances in water and the quantity of substances released over the life cycle. The indication given corresponds to the water volume needed to dilute these substances down to acceptable concentrations.

PEP achieved with Schneider-Electric TT01 V10 and TT02 V22 procedures in compliance with ISO14040 series standards

Verifier accreditation N°: VH08	Applicable PCR: PEP-PCR-ed 2.1-EN-2012 12 11				
Date of issue: 12-2015	Period of validity: 5 years				
Independent verification of the declaration and data, according to ISO 14025: 2006					
Internal X External					
In compliance with ISO 14025:2006 type III environmental declarations					
PCR review was conducted by an expert panel chaired by J. Chevalier (CSTB).					
The elements of the actual PEP cannot be compared with elements from another program.					

Schneider Electric Industries SAS

35, rue Joseph Monier CS 30323 F- 92506 Rueil Malmaison Cedex RCS Nanterre 954 503 439 Capital social 896 313 776 €

www.schneider-electric.com