

Schneider

Contents

Spacial SFM 3
Motor Control Centres
Catalogue number index 4
General presentation 6
Introduction 6
Motor control centres 7
Enclosures 11
New SFM Compartmentalised for MCC fix 13
Mounting plates for fixed MCC switchboards 14
Motor control command functional units 15
2-component motor starter - Direct on line and reversing 15
3-component motor starter - Direct on line and reversing 16
2-component motor starter - Star-delta 18
3-component motor starter - Star-delta 19
Distribution 21
Linergy distribution systems 21
Partitioning 32
Partitioning Form 2 32
Partitioning Form 3 33
Partitioning Form 4 34
Enclosures 35
Selection of Spacial enclosures 35
Spacial accessories 37
Standards 38
Standard IEC 61439 38
Enclosure standard 39

Reference	Page(s)	Reference	Page(s)
01...		NSY2...	
01109	27	NSY2SP206	35
01130	31	NSY2SP208	35
01215	14	NSYA...	
04...		NSYAS600	29
04229	31	NSYAS800	29
04502	26, 27	NSYB...	
04503	26, 27	NSYBF4B3M	34
04504	26, 27	NSYBF4B4M	34
04505	26, 27	NSYBF4B5M	34
04506	26, 27	NSYBF4B6M	34
04516	29	NSYBF4B8M	34
04518	29	NSYBF4B9M	34
04525	29	NSYBHS600	28,30
04526	29	NSYBHS800	28, 30
04528	29	NSYBP203	36
04536	30	NSYBP204	36
04538	30	NSYBP206	35
04545	30	NSYBP208	35
04546	30	NSYBSA	28, 29, 30
04548	30	NSYBVS600	29
04560	28	NSYBVS800	29
04561	28	NSYE...	
04562	28	NSYEB1516D8	37
04563	28	NSYEB2025D8	37
04564	28	NSYEB2050D8	37
04565	28	NSYEC36	37
04566	28	NSYEC64	37
04602	27	NSYEC66	37
04603	27	NSYEC68	37
04620	28	NSYEC84	37
04621	28	NSYEC86	37
04634	27	NSYEC88	37
04635	27	NSYEC361	37
04636	27, 29	NSYEC381	37
04637	29	NSYEC461	37
04640	30	NSYEC481	37
04641	30	NSYEC661	37
04642	29	NSYEC662	37
04645	29	NSYEC681	37
04651	27	NSYEC682	37
04759	31	NSYEC861	37
04766	31	NSYEC862	37
04767	31	NSYEC881	37
04768	31	NSYEC882	37
04772	31	NSYEL166D8	37
04773	31	NSYEL2225D8	37
04774	31	NSYEL3525D8	37
04775	31	NSYF...	
04782	31	NSYFB45	34
04783	31	NSYH...	
04784	31	NSYHPF2B3M4	32
04785	31	NSYHPF2B3M64	32
04786	31	NSYHPF2B3M65	32
04787	31	NSYHPF2B3M84	32
04788	31	NSYHPF2B3M85	32
04794	31	NSYL...	
06...		NSYLC7	37
06540	32	NSYLC8	37
06561	32	NSYLDB5	37
06563	32	NSYLT8	37

Catalogue number index

Reference	Page(s)	Reference	Page(s)
NSYM...		NSYMTR65	33
NSYMBC206	32	NSYMTR84	33
NSYMBC208	32	NSYMTR85	33
NSYMBHS4	28,30	NSYS...	
NSYMBHS5	28,30	NSYSF20360	36
NSYMDT	35	NSYSF20380	36
NSYMFP2M6	35	NSYSF20460	36
NSYMFP2M8	35	NSYSF20480	36
NSYMFP5M6	35	NSYSF20660M	35
NSYMFP5M8	35	NSYSF20680M	35
NSYMIC6	33, 35	NSYSF20860M	35
NSYMIC8	33, 35	NSYSF20880M	35
NSYMP3M6	14, 15, 16, 17, 18	NSYSFBK19	37
NSYMP3M8	14, 15, 16, 17, 18	NSYSFC36	36
NSYMP4M6	14, 15, 16, 18, 19	NSYSFC38	36
NSYMP4M8	14, 15, 16, 18, 19	NSYSFC46	36
NSYMP5M6	14, 18, 19	NSYSFC48	36
NSYMP5M8	14, 18, 19	NSYSFC66	35
NSYMP6M6	14, 15, 17	NSYSFC68	35
NSYMP6M8	14, 15, 17	NSYSFC86	35
NSYMP8M6	14	NSYSFC88	35
NSYMP8M8	14	NSYSFD203	36
NSYMP9M6	14, 15, 17, 18, 20	NSYSFD204	36
NSYMP9M8	14, 15, 17, 18, 20	NSYSFEB	37
NSYMP12M6	14, 15, 17, 18, 20	NSYSFELB	37
NSYMP12M8	14, 15, 17, 18, 20	NSYSFPA	27
NSYMP16M6	14, 17, 18, 20	NSYSFV20	35, 36
NSYMP16M8	14, 17, 18, 20	NSYSPF3100	37
NSYMP18M6	14	NSYSPF3200	37
NSYMP18M8	14	NSYSPF4100	37
NSYMP20M6	14, 20	NSYSPF4200	37
NSYMP20M8	14, 20	NSYSPF6100	37
NSYMP24M6	14, 20	NSYSPF6200	37
NSYMP24M8	14, 20	NSYSPF8100	37
NSYMPD3M6	35	NSYSPF8200	37
NSYMPD3M8	35	NSYSPS6100	37
NSYMPD4M6	35	NSYSPS6200	37
NSYMPD4M8	35	NSYSPS8100	37
NSYMPD5M6	35	NSYSPS8200	37
NSYMPD5M8	35	NSYSUCR40200	27, 32
NSYMPD6M6	35	NSYT.	
NSYMPD6M8	35	NSYTC6CRN	37
NSYMPD8M6	35	NSYTC7CRN	37
NSYMPD8M8	35	NSYTC8CRN	37
NSYMPD9M6	35	NSYTDBCRN	37
NSYMPD9M8	35	NSYTT6CRN	37
NSYMPD12M6	35	NSYTTTCRN	37
NSYMPD12M8	35	NSYTT8CRN	37
NSYMPD16M6	35	NSYV...	
NSYMPD16M8	35	NSYVPF2B4	32
NSYMPD18M6	35		
NSYMPD18M8	35		
NSYMPD20M6	35		
NSYMPD20M8	35		
NSYMPD24M6	35		
NSYMPD24M8	35		
NSYMPFIX	16, 17, 18, 19, 20		
NSYMSC202	32		
NSYMSC206	32		
NSYMTR64	33		

The Spacial SFM compartmentalised functional fixed system can be used for motor control centres in industrial environments (IP54)
It has been tested taking into account device characteristics.
This ensures a high degree of reliability in system operation and optimum safety. Devices can be mounted on universal mounting plates on a workcut-out to simplify installation in the switchboard.

Fixed functional system for Motor Control The fixed functional system for Motor Control Centres is designed for installation of motor starters up to 250 kW .

Motor control centres
 Motor protection

In addition to the motor power and the starter type (direct, reversing, star-delta...),
4 main criteria have to be taken into account when choosing a motor starter:

- the operational voltage,
- the type of thermal protection, electro-mechanical or electronical,
- the type of magnetic protection, according to the switchboard's Isc,
- the type of installation, according to the required availability level.

Operational voltage

Network's operational voltage is a decisive parameter in the choice of motor protection. Indeed, the operational voltage will have an impact on the device's performances and the installation constraints.
For instance, the voltage will influence:

- the breaking performances,
- the safety areas.

Motor protection

Protecting the motors to extend their lifetime

- Overheating in electrical motors is caused by copper and ferro-magnetic losses: \square the current I is proportional to the motor's load. Copper losses are proportional to I^{2} (stator and rotor),
\square hysteresis cycles in ferro-magnetic materials and the induced Foucault currents cause overheating, which is in particular proportional to frequency.
■ The consequence of abnormal overheatings is a reduced isolation capacity of the materials, thus leading to a significant shortening of the motor lifetime, as shown in the opposite diagram.
- In continuous or semi-continuous processes, availability is a major issue. It is therefore decisive to observe accurately the operating conditions of the motors. - Motor protection relays are the components dedicated to this task. They provide various levels of accuracy and functionalities, in order to meet the expectations of the process manager.

Supervising finely the motors to improve process availability

- An electrical motor transforms electrical energy in mechanical energy.

When the voltage, current and frequency change, the speed and torque of the motor change too. And conversely, any changes in charge have a direct impact on the electrical parameters.
■ Electromechanical thermal relays protect the motor against overloads.

- Electronical relays protect the motor against overloads, on the basis of very sophisticated and highly accurate thermal patterns.
\square These relays are able to make out several cases of motor overload, and to transmit the information, thus allowing the operator to have a better understanding of the true nature of the problem,
\square These relays report for many complementary parameters, providing useful informations to the operator, therefore giving him the opportunity to avoid motor stops, or to re-start quickly if a stop has occurred.

\square Examples:

- motor under-load can be the signal of a pump cavitation,
- phase inversion can be the indication of a maintenance error, that should be hard to diagnose without that sign.
- In addition to the observation of currents, the electronical relays can monitor the voltage, and consequently the power and the power factor. They can also watch the leakage currents and measure the actual coil temperature whenever it has a built-in sensor.
All these informations give an additional level of anticipation and shrewdness to help coping with problems.
\square Finally, electronical relays can take on information-processing functions, like state and faults statistics. They are also able to suggest logical solutions, and to react in a process-specific way.

General presentation
 Motor control centres
 Motor protection

Magnetic protection: circuit-breakers and fuses Schneider Electric have chosen to put forward circuit-breakers each time it is possible, as they have advantages in terms of maintenance and capacity of quick re-operating.
The advantages of magnetic circuit breakers over fuses are listed below:
■ universal solution that can be exported to all countries, unlike the fuses,
which standards are not coordinated,

- reduced dimensions,
- limited temperature rise,
- faster maintenance,
- no risk of over-rating the fuse cartridge (causing the motor destruction) or underrating (untimely tripping).

Spacial SFM: a combination for control motor starter

Motor control centres Coordination

Type 1 coordination

Type 2 coordination

Total coordination

Coordination, what is it about?

A "motor starter" can be made up of 1,2 , or 3 different devices. They have to be coordinated in a way they ensure an optimal operation of the installation.

Aims of coordination

In case of a fault, the coordination's purposes are:

- to protect of the people and the equipment,
- to permit continuity of service,
- to reduce maintenance costs (manpower and replacement equipment).

Types of coordination as per IEC 60947-4-1

- Type 1 coordination: basic solution
- no continuity of service,
\square important maintenance costs in case of a fault (manpower and equipment).
- Type 2 coordination: solution ensuring continuity of service
\square reduced machine shutdown time,
\square reduced cost of replacement equipment.
■ Total coordination: withdrawable solutions as per IEC 60947-6-2:
\square no damage nor resetting of devices following a fault,
\square installation immediate return to operation.

Schneider Electric's choice as regards coordination For applications in Spacial SFM high availability switchboard, Schneider Electric has accepted:
$>$ type 2 coordination on grounds of:
■ a low cost for repairing the equipment,

- a reduced machine shutdown time,
and dismissed:
$>$ type 1 coordination and non-coordoned feeders because of:
■ an expensive return to operation,
- a long machine shutdown time.

Motor control centres

Motor starter solutions

2-component motor starter
Thermomagnetic circuit-breaker + contactor
■ Advantages
\square Very economic solutions.
\square Suitable for all types of diagrams.
\square Manual reset following a thermal fault.
\square Type 2 coordination.
- Applications
\square Manufacturing and continuous and semi-continuous processes.

3-component motor starter
 - Advantages

\square Wide choice of solutions.
\square Suitable for all types of diagrams.
\square Manual or automatic reset following a thermal fault.
$\square 2$ starting classes (10 and 20).
\square Type 2 coordination.
\square Segregation of thermal and magnetic faults.

- Magnetic circuit-breaker + contactor + thermal protection
\square For manufacturing and continuous and semi-continuous processes.
■ Switch-disconnector fuse + contactor + thermal protection
\square For all types of machines.
\square For manufacturing and continuous and semi-continuous processes.

Enclosures

Presentation
The Spacial SFM compartmentalised enclosures system used for MCC are based on the Spacial SF range.
They offer the same functions:
■ Different possible configurations, combined side-by-side or back-to-back.
- The built-in partial doors and panels design allow to meet the required degree of protection.
And the same advantages:
- Save time through all assembly phases.
- Enclosure robustness.
\section*{Modularity and Versatility}
They offer 36 vertical modules, each 50 mm high, of useful space.
They have 4 different enclosure dimensions and 2 additional chambers for distribution busbars or cabling management.
They can also be coupled with Spacial SFP for power distribution switchboards.

The functional system

A metal structure

The switchboard is made up of one or more frameworks combined side-by-side or back-to-back, on which a complete selection of cover panels and partial doors can be mounted.
They are used to build IP54 configurations and see ClimaSys offer options for ventilation.
Electrical continuity is achieved using earthing braids.
Plain partial doors are reversible for quick left or right-hand mounting by a single person, 120° opening.
The robustness of the locking system allows naturally the good alingment of the assembly. From 1 to 4 locking points system with 5 mm double-bar insert as standard supply with possibility to replace it by other shape insert.

A distribution system

Vertical busbars positioned in a lateral compartment and horizontal busbars are used to distribute electricity throughout the switchboard.

Complete functional units

The functional unit need to be composed by:

- motor control and protection devices,
- a dedicated plain mounting plate for device installation,
- up to form 4 b thanks to the gland boxes for the terminal isolation on the back of the switchboard or on the side of the cabling chamber,
- devices for on-site connections.

The functional units are modular and designed for installation one on top of another. The system includes everything required for functional unit mounting, supply and onsite connection.
The components of the Spacial SFM compartmentalised system and those of the functional units in particular have been designed and tested taking into account device characteristics. This design approach ensures a high degree of reliability in system operation and optimum safety for personnel. Electrical switchboards built using Schneider Electric recommendations fully comply with international standard IEC 61439-2 and IEC 62208.

Withstand to the most demanding environements
 - IP54 degree of protection for the dusty and/or damp industrial environments.
 - Seismic withstand.
 - Optional forced ventilation for environments with ambient temperatures hotter than $45^{\circ} \mathrm{C}$ or for devices sith considerable heat loss (see ClimaSys offer options).

Type tested

Spacial SFM compartmentalised is totally type-tested in accordance with IEC 61439-2.

- Certified by independant lab.
- As well as by a permanent control in Schneider Electric test laboratories.
- Type-tests are carried out:
\square temperature-rise limit,
- dielectric properties,
\square short-circuit withstand,
- effectiveness of the protective circuit,
- conformity of the clearance and creepage distances,
- mechanical operation,
\square degree of protection.

Partitioning

Partitioning is essential to ensure the utmost protection of the installation and personnel carrying out work in the switchboard. Used in conjunction with the standard protection (terminal shields, factory-built connections), partitioning prevents any direct contact with live parts.

Form 2b

- Terminals for external conductors separated from busbars.
- The functional units and the terminals are separated from the busbars.

Form 4a

Terminals for external conductors in the same compartment as the associated functional unit.

Form 3b

Separation of busbars from the functional units and separation of all functional units from one another. Separation of the terminals for external conductors from the functional units, but not from each other. - Protection against contact with live parts. - Reduction in the risk of faults between the functional units (propagation of electrical arcs, etc.).

Form 4b

Terminals for external conductors not in the same compartment as the associated functional unit, but in individual, separate, enclosed protected spaces or compartments.

General data	
Applications	MCC
Standards	IEC 61439-2
Internal arc	No
Seismic	3G
Installation	Indoor

Mechanical data	
Cable inlet	Top / Bottom
Access	Front / Rear Side
IP	54
IK	10
Form	4b type 7
Withdrability	FFF
Dimensions	H $2000 /$ W $600 \& 800 /$ D $600 \& 800$
Color	RAL 7035

Electrical data	
Insulation voltage (Ui)	1000 V
Voltage rating(Ue)	415 V
Coordination	Type 2
Frequency	$50 / 60 \mathrm{~Hz}$
Auxiliary circuit voltage	230 V
Degree of pollution	3
Rated current (IP>31)	2500 A (with Copper \& Linergy)
Short circuit (Icw $-1 \mathrm{~s})$	85 kA

Monptiantypazateatisedféreclosure TACMetritChtodandEentres
 Mounting plates for fixed MCC switchboards

Motor control functional units
The plain mounting plates can be used to install all the devices making up an MCC motor starter on a single support.

Easy installation

Motor feeders can be prepared on a bench making the cut-outs needed.
The quick-fixing system allows to hold the mounting plate during device installation and wiring. The mounting plate can be fixed on the side partitions in adjustable depth with a pitch of 50 mm .

Switchboard upgradeability

■ Functional units with form partitioning 3b and 4b.

- Sides and Rear accessibility.

■ Separation panels with pre-cuts for cable-glands ref. 01215.

Functional unit reliability

- The unit of height for the mounting plates is the 50 mm module.

■ 3 to 24 module (150 to 1200 mm) mounting plates are installed in 600 and 800 mm wide cubicles.
■ Capacity of Spacial SFM cubicles: 36 modules (50 mm each).
■ Cables are run in dedicated 300 or 400 mm wide lateral compartments.

Plain mounting plates

Dimension of the compartment			References	
Number of modules	Rate (mm)	Width (mm)	Mounting plate	Fixing kit
3M	150	600	NSYMP3M6	NSYMPFIX
		800	NSYMP3M8	
4M	200	600	NSYMP4M6	
		800	NSYMP4M8	
5M	250	600	NSYMP5M6	
		800	NSYMP5M8	
6M	300	600	NSYMP6M6	
		800	NSYMP6M8	
8M	400	600	NSYMP8M6	
		800	NSYMP8M8	
9M	450	600	NSYMP9M6	
		800	NSYMP9M8	
12M	600	600	NSYMP12M6	
		800	NSYMP12M8	
16M	800	600	NSYMP16M6	
		800	NSYMP16M8	
18M	900	600	NSYMP18M6	
		800	NSYMP18M8	
20M	1000	600	NSYMP20M6	
		800	NSYMP20M8	
24M	1200	600	NSYMP24M6	
		800	NSYMP24M8	

2-component motor starter
Direct on line and reversing
GV2, GV3 and GV7

Selection of recommended combinations

lq (kA)		Motor characteristics		Motor starter solution		Mounting plate Number of modules ($1 \mathrm{M}=50 \mathrm{~mm}$)	
Without limiter	With GV1L3	P max (kW)	$I \max (\mathrm{~A})$	Circuit breaker	Contactor (1)	DOL	Reversing
GV2							
85	-	0.18	0.6	GV2-P04	LC1D09	3M	3M
85	-	0.25	0.9	GV2-P05	LC1D09	3M	3M
85	-	0.37	1.1	GV2-P06	LC1D09	3M	3M
85	-	0.55	1.5	GV2-P06	LC1D09	3M	3M
85	-	0.75	1.8	GV2-P07	LC1D09	3M	3M
85	-	1.1	2.6	GV2-P08	LC1D09	3M	3M
85	-	1.5	3.4	GV2-P08	LC1D09	3M	3M
85	-	2.2	4.8	GV2-P10	LC1D09	3M	3M
85	-	3	6.5	GV2-P14	LC1D09	3M	3M
85	-	4	8.2	GV2-P14	LC1D18	3M	3M
50	85	5.5	11	GV2-P16	LC1D25	3M	3M
50	85	7.5	14	GV2-P20	LC1D25	3M	3M
50	85	10	19	GV2-P21	LC1D32	3M	3M
50	85	11	21	GV2-P22	LC1D32	3M	3M
50	85	15	28	GV2-P32	LC1D32	3M	3M
50	-	18.5	34	GV3-P40	LC1D50A	3M	4M
50	-	22	40	GV3-P50	LC1D50A	3M	4M
50	-	30	55	GV3-P65	LC1D65	3M	4M
70	-	15	28	GV7-RS40	LC1D40	3M	6M
70	-	18.5	34	GV7-RS40	LC1D50	3M	6M
70	-	22	40	GV7-RS50	LC1D80	3M	6M
70	-	30	55	GV7-RS80	LC1D80	3M	6M
70	-	37	66	GV7-RS80	LC1D80	3M	6M
70	-	45	80	GV7-RS100	LC1D115	4M	9M
70	-	55	100	GV7-RS150	LC1D150	6M	9M
70	-	75	135	GV7-RS150	LC1F185	9M	12M
70	-	90	160	GV7-RS220	LC1F225	9M	12M
70	-	110	200	GV7-RS220	LC1F265	9M	12M

Selection of the mounting plate

Dimension of the compartment			References	
Number of modules	Rate (mm)	Width (mm)	Mounting plate	Fixing kit
3M	150	600	NSYMP3M6	NSYMPFIX
		800	NSYMP3M8	
4M	200	600	NSYMP4M6	
		800	NSYMP4M8	
6M	300	600	NSYMP6M6	
		800	NSYMP6M8	
9M	450	600	NSYMP9M6	
		800	NSYMP9M8	
12M	600	600	NSYMP12M6	
		800	NSYMP12M8	

Motor control command functional units

3-component motor starter

Direct on line and reversing

GV2 and GV3

Ue	IP	Ambiant temperature
415 V	SIP54	$35^{\circ} \mathrm{C}$

Selection of recommended combinations

Iq (kA)		Motor characteristics		Motor starter solution			Mounting plate Number of modules ($1 \mathrm{M}=50 \mathrm{~mm}$)	
Without limiter	With LA9LB920	P max (kW)	I max (A)	Circuit breaker	Contactor (1)	Thermal relay	DOL	Reversing
85	-	0.18	0.6	GV2-L04	LC1D09	LRD04	3M	3M
85	-	0.25	0.9	GV2-L05	LC1D09	LRD05	3M	3M
85	-	0.37	1.1	GV2-L06	LC1D09	LRD06	3M	3M
85	-	0.55	1.5	GV2-L06	LC1D09	LRD06	3M	3M
85	-	0.75	1.8	GV2-L07	LC1D09	LRD07	3M	3M
85	-	1.1	2.6	GV2-L08	LC1D09	LRD08	3M	3M
85	-	1.5	3.4	GV2-L08	LC1D09	LRD08	3M	3M
85	-	2.2	4.8	GV2-L10	LC1D09	LRD10	3M	3M
85	-	3	6.5	GV2-L14	LC1D09	LRD12	3M	3M
85	-	4	8.2	GV2-L14	LC1D18	LRD14	3M	3M
50	85	5.5	11	GV2-L16	LC1D25	LRD16	3M	3M
50	85	7.5	14	GV2-L20	LC1D25	LRD21	3M	3M
50	85	10	19	GV2-L21	LC1D32	LRD22	3M	3M
50	85	11	21	GV2-L22	LC1D32	LRD22	3M	3M
50	85	13	24	GV2-L32	LC1D32	LRD32	3M	3M
50	-	18.5	34	GV3-L40	LC1D50A	LRD340	3M	4M
50	-	22	40	GV3-L50	LC1D50A	LRD350	3M	4M
50	-	26	49	GV3-L65	LC1D65A	LRD365	3M	4M

Selection of the mounting plate

Dimension of the compartment	References			
Number of modules	Rate $(\mathbf{m m})$	Width $(\mathbf{m m})$	Mounting plate	Fixing kit
3 M	150	600	NSYMP3M6	NSYMPFIX
4 MM	200	600	NSYMP3M8	
		800	NSYMP4M6	

Motor control command functional units

3-component motor starter
 Direct on line and reversing NS80H and NSX

Ue	IP	Ambiant temperature
415 V	\leq IP54	$35^{\circ} \mathrm{C}$

Selection of recommended combinations

$\operatorname{lq}(\mathrm{kA})$	Motor cha	teristics	Motor starte	solution			$\text { es }(1 \mathrm{M}=50 \mathrm{~mm})$
	P max (kW)	$I \max (\mathrm{~A})$	Circuit breaker	Contactor (1)	Thermal relay	DOL	Reversing
70	18.5	34	NS80H-MA	LC1D50	LRD3355	3M	6M
70	22	40	NS80H-MA	LC1D50	LRD3357	3M	6M
70	30	55	NS80H-MA	LC1D65	LRD3359	3M	6M
70	37	66	NS80H-MA	LC1D80	LRD3363	3M	6M
(2)	18.5	34	NSX100•MA	LC1D80	LRD3355	3M	6M
(2)	22	40	NSX100•MA	LC1D80	LRD3357	3M	6M
(2)	30	55	NSX100•MA	LC1D80	LRD3359	3M	6M
(2)	37	64	NSX100•MA	LC1D80	LRD3363	3M	6M
(2)	45	80	NSX100•MA	LC1D115	LR9D5367	6M	9M
(2)	55	100	NSX160•MA	LC1D150	LR9D5369	6M	9M
(2)	75	135	NSX160•MA	LC1F185	LR9F5369	9M	12M
(2)	90	160	NSX250• MA	LC1F225	LR9F5371	9M	12M
(2)	100	187	NSX250•MA	LC1F265	LR9F5371	9M	12M
(2)	132	230	NSX400•1.3-M	LC1F330	LR9F7375	12M	16M
(2)	160	270	NSX400•1.3-M	LC1F330	LR9F7375	12M	16M
(2)	200	361	NSX630•1.3-M	LC1F500	LR9F7379	16M	16M
(2)	220	380	NSX630•1.3-M	LC1F500	LR9F7379	16M	16M
(2)	250	430	NSX630•1.3-M	LC1F500	LR9F7379	16M	16M
(1) $2 \times$ LC1-D for reversing (2) $N S X \ldots=36 \mathrm{kA}$							
$N S X \ldots N=50 \mathrm{kA}$							
NSX $\ldots . . \mathrm{H}=70 \mathrm{kA}$							
NSX...S $=85 \mathrm{kA}$							
NSX400L $=150 \mathrm{kA}$							
NSX630L $=150 \mathrm{kA}$							

Selection of the mounting plate

Dimension of the compartment			References	
Number of modules	Rate (mm)	Width (mm)	Mounting plate	Fixing kit
3M	150	600	NSYMP3M6	NSYMPFIX
		800	NSYMP3M8	
6M	300	600	NSYMP6M6	
		800	NSYMP6M8	
9M	450	600	NSYMP9M6	
		800	NSYMP9M8	
12M	600	600	NSYMP12M6	
		800	NSYMP12M8	
16M	800	600	NSYMP16M6	
		800	NSYMP16M8	

Motor control command functional units

Ue	IP	Ambiant temperature
415 V	SIP54	$35^{\circ} \mathrm{C}$

2-component motor starter
Star-delta
GV2, GV3 and GV7

Selection of recommended combinations

$1 \mathrm{l}(\mathrm{kA})$		Motor characteristics		Motor starter solution		Mounting plate Number of modules (1M = 50 mm)
Without limiter	With GV1L3	P max (kW)	1 max (A)	Circuit breaker	Contactor	Star-delta
85	-	0.37	1.1	GV2-P06	3xLC1D09	4M
85	-	0.55	1.5	GV2-P06	3xLC1D09	4M
85	-	0.75	1.8	GV2-P07	3xLC1D09	4M
85	-	1.1	2.6	GV2-P08	3xLC1D09	4M
85	-	1.5	3.4	GV2-P08	3xLC1D09	3M
85	-	2.2	4.8	GV2-P10	3xLC1D18	4M
85	-	3	6.5	GV2-P14	3xLC1D18	3M
85	-	4	8.2	GV2-P14	3xLC1D18	4M
50	85	5.5	11	GV2-P16	3xLC1D25	4M
50	85	7.5	14	GV2-P20	3xLC1D25	4M
50	85	10	19	GV2-P21	3xLC1D32	5M
50	85	11	21	GV2-P22	3xLC1D32	4M
35	85	15	28	GV2-P32	3xLC1D32	4M
50	-	18.5	34	GV3-P40	3xLC1D50A	5M
50	-	22	40	GV3-P50	3xLC1D50A	5M
50	-	30	55	GV3-P65	3xLC1D65A	5M
70	-	15	28	GV7-RS40	3xLC1D80	9M
70	-	18.5	34	GV7-RS40	3xLC1D50	9M
70	-	22	40	GV7-RS50	3xLC1D80	9M
70	-	30	55	GV7-RS80	3xLC1D80	9M
70	-	45	80	GV7-RS100	3xLC1D115	12M
70	-	55	100	GV7-RS150	3xLC1D150	12M
70	-	75	135	GV7-RS150	3xLC1F185	16M
70	-	90	160	GV7-RS220	3xLC1F225	16M
70	-	110	200	GV7-RS220	3xLC1F265	16M

Selection of the mounting plate

Dimension of the compartment			References	
Number of modules	Rate (mm)	Width (mm)	Mounting plate	Fixing kit
3M	150	600	NSYMP3M6	NSYMPFIX
		800	NSYMP3M8	
4M	200	600	NSYMP4M6	
		800	NSYMP4M8	
5M	250	600	NSYMP5M6	
		800	NSYMP5M8	
9M	450	600	NSYMP9M6	
		800	NSYMP9M8	
12M	600	600	NSYMP12M6	
		800	NSYMP12M8	
16M	800	600	NSYMP16M6	
		800	NSYMP16M8	

Motor control command functional units

3-component motor starter Star-delta
 GV2 and GV3

Ue	IP	Ambiant temperature
$\mathbf{4 1 5 ~ V}$	\leq IP54	$35^{\circ} \mathrm{C}$

Selection of recommended combinations

Iq (kA)		Motor characteristics		Motor starter solution			Mounting plate Number of modules (1M = 50 mm)
Without limiter	With LA9LB920	P max (kW)	1 max (A)	Circuit breaker	Contactor	Thermal relay	Star-delta
85	-	0.37	1.1	GV2-L06	3xLC1D09	LRD06	4M
85	-	0.55	1.5	GV2-L06	3xLC1D09	LRD06	4M
85	-	0.75	1.8	GV2-L07	3xLC1D09	LRD07	4M
85	-	1.1	2.6	GV2-L08	3xLC1D09	LRD08	4M
85	-	1.5	3.4	GV2-L08	3xLC1D09	LRD08	4M
85	-	2.2	4.8	GV2-L10	3xLC1D18	LRD10	4M
85	-	3	6.5	GV2-L14	3xLC1D18	LRD12	4M
85	-	4	8.2	GV2-L14	3xLC1D18	LRD14	4M
50	85	5.5	11	GV2-L16	3xLC1D25	LRD16	4M
50	85	7.5	14	GV2-L20	3xLC1D25	LRD21	4M
50	85	10	19	GV2-L21	3xLC1D32	LRD22	4M
50	85	11	21	GV2-L22	3xLC1D32	LRD22	4M
35	85	15	24	GV2-L32	3xLC1D32	LRD32	4M
50	-	18.5	34	GV3-L40	3xLC1D50A	LRD340	5M
50	-	22	40	GV3-L50	3xLC1D50A	LRD350	5M
50	-	30	49	GV3-L65	3xLC1D65A	LRD365	5M

Selection of the mounting plate

| Dimension of the compartment |
| :--- | :--- | :--- | :--- | :--- |\quad References | (|
| :--- |

Motor control command functional units

Ue	IP	Ambiant temperature
415 V	SIP54	$35^{\circ} \mathrm{C}$

3-component motor starter
Star-delta
NS80H and NSX

Selection of recommended combinations

lq (kA)	Motor characteristics		Motor starter solution			Mounting plate Number of modules (1M = 50 mm)
	P max (kW)	1 max (A)	Circuit breaker	Contactor	Thermal relay	Star-delta
70	18.5	34	NS80H-MA	3xLC1D50	LRD3355	9M
70	22	40	NS80H-MA	3xLC1D50	LRD3357	9M
70	30	55	NS80H-MA	3xLC1D65	LRD3359	9M
70	37	66	NS80H-MA	3xLC1D80	LRD3363	9M
(1)	18.5	34	NSX100•MA	3xLC1D80	LRD3355	9M
(1)	22	40	NSX100•MA	3xLC1D80	LRD3357	9M
(1)	30	55	NSX100•MA	3xLC1D80	LRD3359	9M
(1)	37	64	NSX100•MA	3xLC1D80	LRD3363	9M
(1)	45	80	NSX100• MA	3xLC1D115	LR9D5367	12M
(1)	55	100	NSX160•MA	3xLC1D150	LR9D5369	12M
(1)	75	135	NSX160•MA	3xLC1F185	LR9F5369	16M
(1)	90	160	NSX250•MA	3xLC1F225	LR9F5371	16M
(1)	110	187	NSX250•MA	3xLC1F265	LR9F5371	16M
(1)	132	230	NSX400•1.3-M	3xLC1F330	LR9F7375	20M
(1)	160	270	NSX400•1.3-M	3xLC1F330	LR9F7375	20M
(1)	200	361	NSX630•1.3-M	3xLC1F500	LR9F7379	24M
(1)	220	380	NSX630•1.3-M	3xLC1F500	LR9F7379	24M
(1)	250	430	NSX630•1.3-M	3xLC1F500	LR9F7379	24M

(1) $N S X \ldots F=36 \mathrm{kA}$

NSX... $\mathrm{N}=50 \mathrm{kA}$
NSX... $H=70 \mathrm{kA}$
NSX... $S=85 \mathrm{kA}$
NSX400L $=150 \mathrm{kA}$
NSX630L $=150 \mathrm{kA}$

Selection of the mounting plate

Dimension of the compartment			References	
Number of modules	Rate (mm)	Width (mm)	Mounting plate	Fixing kit
9M	450	600	NSYMP9M6	NSYMPFIX
		800	NSYMP9M8	
12M	600	600	NSYMP12M6	
		800	NSYMP12M8	
16M	800	600	NSYMP16M6	
		800	NSYMP16M8	
20M	1000	600	NSYMP20M6	
		800	NSYMP20M8	
24M	1200	600	NSYMP24M6	
		800	NSYMP24M8	

Linergy distribution systems Presentation

Linergy LGYE-LGY

 a breakthrough in busbar systems

 a breakthrough in busbar systems}

Safe, reliable, flexible, and flexible with the highest level of performance

The Linergy LGYE-LGY busbar system now includes horizontal busbars, for greater electrical switchboard enclosure performance, reliability, and costeffectiveness.

Manufactured using a revolutionary process, patented Linergy busbars are unique on the market, taking your electrical switchboard installations a giant leap into the future.

Discover how
Linergy LGYE-LGY
can place the next
generation of low-voltage
switchboards in your
hands.

Innovative technology from an energy expert you can trust

Patented Linergy LGYE-LGY is backed by Schneider Electric's decades of expertise in electrical distribution systems and is certified IEC 61439-2 compliant by ASEFA.

Linergy unique profile was designed with the ratings you need, a commitment to performance backed by regular testing up to 4000 A.

Heat is dissipated by conduction and radiation for performance only a market leader can bring you.

Linergy LGYE-LGY busbars
performances are identical or better than traditional all Linergy BS busbars.

Unlike tin-plated aluminum busbars, rugged Linergy LGYE-LGY busbars are resistant to scratching during assembly to ensure optimal connection quality and reliability.

High Velocity Oxy-Fuel, unique on the busbar market

Patented Linergy LGYE-LGY uses a supersonic high-temperature coating process for a robust copper contact surface.

Linergy distribution systems
 Presentation

A revolutionary design for greater efficiency

The Linergy line now includes horizontal busbars, helping you achieve better electrical switchboard performance while optimizing busbar layout and facilitating assembly.

Schneider Electric ${ }^{\text {TM }}$ has drawn upon 30 years of expertise in electrical distribution systems and a decade of hands-on experience with the proven and reliable Linergy line of products. It brings you a revolutionary design featuring a high-quality copper contact surface that delivers even better results than traditional Linergy BS-to-Linergy BS connections.
Linergy LGYE-LGY busbars offer a number of benefits to help you enhance performance and boost your competitiveness.

Lightweight
Linergy is half the weight of equivalentrated Linergy BS bars for more fuel-efficient transport, easier handling, and smoother installation.

Higher-capacity

A single Linergy LGYE bar can withstand ratings up to 2500 A . It would take two or three Linergy BS bars per pole to achieve similar ratings.

Robust and flexible

Linergy LGYE bars are extruded for a unique profile that includes both closed and ribbed sections, improving rigidity, thermal dissipation, and resistance to short circuits, with a shortcircuit withstand capacity (Icw) of 85 kA/1s for SFM and $100 \mathrm{kA} / 1 \mathrm{~s}$ for Spacial SFP.

Attractive

The revolutionary copper contact strips, anodized aluminum surface, and unique shapes give a modern appearance and a soft touch.

IEC standards-compliant

The latest standards were factored in from the early design stages to ensure that temperatures are kept below the IEC61439-2 standard requirements, for optimal performance regardless of the switchboard configuration.

Environmentally-friendly

Instead of increasingly-scarce copper, Linergy LGYE is made from 70% recycled raw materials offering the same performance as primary raw materials.

Cost-effective

Linergy LGYE-LGY helps you achieve cost savings now and provides protection against fluctuating copper prices in the future, plus all the advantages of a raw material that is easy to purchase and store.

Linergy distribution systems

 Presentation
Linergy accessories are also evolving!

Linergy LGYE is a full-featured busbar system that includes all the connections, screws, bolts, isolating supports, and other accessories you need for drill-free assembly.

Panel builders, we've thought of everything to make your life easier!

Linergy LGYE-LGY busbars are lightweight, making them easy to transport and handle in the workshop.

- With Linergy LGYE-LGY, you can continue to use the familiar Spacial SFP busbar supports you already know for Linergy BS bars.
There's no new system to learn.
- Linergy LGYE-LGY offers single bars for each rating, making handling during installation faster and more convenient.
- Linergy LGYE-LGY bars are fast and easy to position without drilling, thanks to a sliding bolt and track system.
- Linergy screws let you add extra outgoing connections without drilling new holes or dismounting previous connections or busbar supports, saving you time and giving you greater flexibility in the event of last-minute changes.
- Linergy LGYE-LGY busbars offer a unique shape with no sharp edges for safer, smoother handling and installation the bars simply slide right in to the busbar supports.
- Existing Linergy LGY vertical busbars are easy to connect to Linergy LGYE with ready-toinstall accessories like vertical connectors.
- Linergy materials are easy to recycle via well-established aluminum recycling services already in use for materials like aluminum cans, coffee capsules, door and window frames, and engine blocks.

Linergy distribution systems Presentation

Linergy also offers the most advanced busbar solutions while remaining simple.

Linergy LGYE / LGY /BS
Power busbars
> Solutions available up to 2500 A for Spacial SFM up to 4000 A for Spacial SFP.
> Connection everywhere without drilling (with LGY and LGYE profile).

Linergy distribution systems
 Lateral Linergy busbars
 up to 1600 A

Busbar calculation
The following table indicates:
■ the catalogue numbers of the bars to be used, depending on the permissible
current level in the busbars,
■ the number of supports required, depending on the rated short-time withstand current (Icw in kA rms / 1 second).

Note: the permissible current values for the busbars are given for an ambient temperature of $35^{\circ} \mathrm{C}$ around the switchboard.
The bottom support also maintains the bars in position.
Each catalogue number represents one bar.

Busbar selection

Busbars up to 1600 A.
The bottom support is used in wedging busbars in position.
Linergy busbars, $\mathrm{L}=1670 \mathrm{~mm}$
Cat. no. selection
See the table below.
Each bar is supplied with a stop for the bottom support.

Bar 630 A.
Cat. no. 04502

Bar 1250 A.
Cat. no. 04505

Bar 800 A.
Cat. no. 04503

Bar 1600 A. Cat. no. 04506

Distribution

Linergy distribution systems
 Linergy LGY
 Lateral profiles up to 1600 A

Connections to the Linergy LGYE horizontal busbar
Characteristics
Cat. no.

Linergy distribution systems Linergy LGYE Horizontal profiles up to 2500 A

Linergy LGYE profiles Installation in Spacial SFM compartmentalised
Linergy profile, 2000 mm length

[^0]
Linergy distribution systems
 Linergy BS
 Lateral flat busbars up to 2500 A

Distribution

Linergy distribution systems Linergy BS
 Horizontal flat busbars up to 2500 A

Note: When installed at the bottom of a cubicle, the busbar must be partitioned.

Linergy distribution systems Accessories

Accessories		

Connections on Linergy LGYE \& LGY

$\ln A(A)$		Connection on Linergy	Utilisation	Cat no.	
0 to 630	Cable Insulated flexible bar	Use the 25 mm Linergy screw	Recommended	04766	\sqrt{k} sucm
		Use the 39 mm Linergy screw	Possible	$04767{ }^{(1)}$	
800 to 1250	5 mm thick bar	Use the 25 mm Linergy screw	Recommended	04766	
		Use the 39 mm Linergy screw	Possible	$04767{ }^{(1)}$	
		Use the flat plate screw with 2 studs	Possible	04768	
1600 to 2500	5 or 10 mm thick bar	Use the flat plate screw with 2 studs	Recommended	04768	
		Use the 39 mm Linergy screw	Possible	$04767{ }^{(1)}$	

(1) 04767 is only compatible with Linergy LGY.

Partitioning Form 2

Separation of busbars from the functional units:

- protection against contact with live parts upstream of the outgoing circuits,
- protection against penetration of foreign solid bodies.

[^1]For an enclosure with depth of 800 mm the compartment depth is 500 mm .

Accessorie for partitioning Form 2

External claddings	
	Intermediate Crossbar
	骨
Characteristics	- It is mounted between partial doors, guaranteeing good sealing. - To be used in the absence of the partition tray. - Direct fixing to the structure. - Available in 2 widths (mm).
Supply	2 crossbars with fixing elements
N° cat.	W600: NSYMIC6 W800: NSYMIC8

Partitioning Form 3

Separation of busbars from the functional units and separation of all functional units from one another.
Separation of the terminals for external conductors from the functional units, but not from each other.

- protection against contact with live parts
- reduction in the risk of faults between the functional units (propagation of electrical arcs, etc.).

Form 3 partitioning
Horizontal partitioning

[^2]For an enclosure with depth of 800 mm the compartment depth is 500 mm .

Partitioning Form 4

Separation of busbars from the functional units and separation of all functional units from one another, including the terminals for external conductors which are an integral part of the functional unit:

- Protection against contacts with live parts and reduction in the risk of faults between the functional units (propagation of electrical arcs, etc.).
■ Form 4a: terminal for external conductors in the same compartment as the associated.
■ Form 4b: Terminals for external conductors not in the same compartment as the associated functional unit, but in individual, separate, enclosed protected spaces or compartments.

Form 4 b boxes
Characteristics
■ Metallic plain box composed by 2 parts that can be easily installed for side or rear connection to separate the terminals for external
conductors of the functional unit.
■ Available in 6 heights:

Other universal common accessories

Mounting \& Cable management acc.		
Cat. no.	See on Universal En	catalogue

Selection of Spacial enclosures For Motor Control Centres

Common characteristics

$■$ Spacial SFM framework with compartmentalised system that can be combined side-by-side with busbar and cable chambers.
■ Receive the cover panels and partial doors IP54
■ Material: steel.
■ Finish: painted with epoxy-polyester resin
■ Colour: RAL 7035 grey.

- Possibility to order it assembled or kit supply.

Compartmentalised enclosure

	Assembled supply		Kit supply	
	W600	W800	W600	W800
Characteristics	- Structure: Top and bottom frame and vertical uprights H 2000 mm . - Useful height for doors $\mathrm{H} 1800 \mathrm{~mm} / 36 \mathrm{M}$, when are installed the top and bottom fix panels for modularity (mandatory for installation of partial doors). - Equipped with removable roof, external fixing rear panel and top \& bottom fixed panels (H 100 mm) to allow modularity of partial doors. - 4 dimensions available.			
Cat. no.	D600: NSYSF20660M D800: NSYSF20680M	D600: NSYSF20860M D800: NSYSF20880M	-	-
Vertical uprights H 2000 mm	-	-	NSYSFV20	NSYSFV20
Top \& Bottom frame with roof	-	-	D600: NSYSFC66 D800: NSYSFC68	D600: NSYSFC86 D800: NSYSFC88
Rear panel	-	-	NSYBP206	NSYBP208
Fixed panels for modularty $\mathrm{H} 100 \mathrm{~mm} / 2 \mathrm{M}$ (intermediate crossbars included)	-	-	See table below	See table below

External claddings

	Front Fix panel for modularity		Frontal partial doors		Side panels	
	W600	W800	W600	W800	D600	D800
Characteristics	- Top \& bottom fix required to install p If there is no horiz or bottom, the inter ordered separately or NSYMIC8 (W80 - 2M fixed panels for the compartmen Possibility to order Spacial SFM frame Available in 2 he	el to obtain modularity al doors. tal partitioning on top liate crossbar has to be NSYMIC6 (W600 mm)). delivered as standard zed enclosure. parately for kin kit supply. $\mathrm{s}(\mathrm{M})^{(1)} .$	- Plain partial door w insert. - They are fixed to th by means of hinges. - Drilling template for (Only 1 drilling templa - Opening to right or - 1,2 or 4 locking poin - Possibility to replac (see page 37). - Available in followin	lock 5 mm double-bar prights of the framework rights ref. NSYMDT by order is needed). according different heights. cking insert heights $(M){ }^{(1)}$.	Set of 2 sid of the enclosu Captive sc the panels. - Available in	s fixed to the outside -mounted on (mm).
Cat. no.	2M: NSYMFP2M6 5M: NSYMFP5M6	2M: NSYMFP2M8 5M: NSYMFP5M8	3M: NSYMPD3M6 4M: NSYMPD4M6 5M: NSYMPD5M6 6M: NSYMPD6M6 8M: NSYMPD8M6 9M: NSYMPD9M6 12M: NSYMPD12M6 16M: NSYMPD16M6 18M: NSYMPD18M6 20M: NSYMPD20M6 24M: NSYMPD24M6	3M: NSYMPD3M8 4M: NSYMPD4M8 5M: NSYMPD5M8 6M: NSYMPD6M8 8M: NSYMPD8M8 9M: NSYMPD9M8 12M: NSYMPD12M8 16M: NSYMPD16M8 18M: NSYMPD18M8 20M: NSYMPD20M8 24M: NSYMPD24M8	NSY2SP206	NSY2SP208

[^3]Busbar \& cabling chambers

		Assembled supply		Kit supply	
		W300	W400	W300	W400
Characteristics		- Structure: Top and bottom frame and vertical uprights H 2000 mm . - Equipped with removable roof, external fixing rear panel and front plain door with 4 point locking system with handle and DB 5 mm insert. 4 dimensions available.			
Cat. no.		$\begin{array}{\|l\|} \hline \text { D600: } \\ \text { D800: } \end{array}$	$\begin{array}{\|l\|} \hline \text { D600: } \\ \text { D800: } \end{array}$	-	-
	Vertical uprights H2000 mm	-	-	NSYSFV20	NSYSFV20
	Top \& Bottom frame with roof	-	-	D600: NSYSFC36 D800: NSYSFC38	D600: NSYSFC46 D800: NSYSFC48
	Rear panel	-	-	NSYBP203	NSYBP204
	Front plain door	-	-	NSYSFD203	NSYSFD204

Spacial accessories

Other composition accessories									
			Cable-gland plates			Plinth (100 mm height)		Plinth (200 mm height)	
H (mm)	W (mm)	D (mm)	Plain	1 entry	2 entries	Front kit	Side kit	Front kit	Side kit
2000	600	600	NSYEC66	NSYEC661	NSYEC662	NSYSPF6100	NSYSPS6100	NSYSPF6200	NSYSPS6200
2000	600	800	NSYEC68	NSYEC681	NSYEC682	NSYSPF6100	NSYSPS8100	NSYSPF6200	NSYSPS8200
2000	800	600	NSYEC86	NSYEC861	NSYEC862	NSYSPF8100	NSYSPS6100	NSYSPF8200	NSYSPS6200
2000	800	800	NSYEC88	NSYEC881	NSYEC882	NSYSPF8100	NSYSPS8100	NSYSPF8200	NSYSPS8200
2000	300	600	NSYEC36	NSYEC361	-	NSYSPF3100	NSYSPS6100	NSYSPF3200	NSYSPS6200
2000	300	800	-	NSYEC381	-	NSYSPF3100	NSYSPS8100	NSYSPF3200	NSYSPS8200
2000	400	600	NSYEC64	NSYEC461	-	NSYSPF4100	NSYSPS6100	NSYSPF4200	NSYSPS6200
2000	400	800	NSYEC84	NSYEC481	-	NSYSPF4100	NSYSPS8100	NSYSPF4200	NSYSPS8200

	Coupling kit	4 lifting eyebolts	4 lifting brackets	Earth braids	Earthing cables
Characteristics	$\begin{aligned} & \text { Side-by-side } \\ & \text { combination. } \\ & \text { - Back-to-back } \\ & \text { combination }{ }^{(2)} \text {. } \end{aligned}$	- Use a set of lifting eyebolts rings for each framework ${ }^{(3)}$.	- When two cubicles with devices have been combined, use a lifting brackets.	I NSYEB1516D8: a Length 155 mm, a Section $16 \mathrm{~mm}^{2}$, a Terminal 8.5 mm . I NSYEB2025D8: a Length 200 mm, a Section $25 \mathrm{~mm}^{2}$, a Terminal 8.5 mm . ISYEB2050D8: I Length 200 mm, a Section $50 \mathrm{~mm}^{2}$, a Terminal $8.5 \mathrm{~mm}^{2}$.	- NSYEL166D8: - Length 160 mm , - Section $6 \mathrm{~mm}^{2}$, - Terminal 8.3 mm , - NSYEL2225D8: - Length 220 mm - Section $25 \mathrm{~mm}^{2}$, - Terminal 8.3 mm . - NSYEL3525D8: - Length 350 mm , - Section $25 \mathrm{~mm}^{2}$, - Terminal 8.3 mm .
Cat. no.	NSYSFBK19	NSYSFEB	NSYSFELB	NSYEB1516D8 NSYEB2025D8 NSYEB2050D8	NSYEL166D8 NSYEL2225D8 NSYEL3525D8

(2) Back to back association must be shipped individually and combined during on-site installation.
(3) For 2 columns:

For 3 columns:

For more than 3 colomuns, lenghts $>1600 \mathrm{~mm}$, see Lifting bars options on Universal Enclosures catalogue.

| Locks for partial doors | $\begin{array}{l}\text { Possibility to replace standard insert by one from the table below } \\ \text { (CRN range) and by keeping the standard latch. } \\ \text { Insert references } \\ \text { NSYTDBCRN* }\end{array}$ |
| :--- | :--- | :--- | :--- |
| Type of lock | Key references |$\}$

Both the point of arrival of energy and a device for distribution to the site applications, the LV switchboard is the intelligence of the system, central to the electrical installation.

It plays an essential role in the availability of electric power, while meeting the needs of personal and property safety.
Its definition, design and installation are based on precise rules; there is no place for improvisation. The IEC 61439 standard aims to better define "low-voltage switchgear and controlgear assemblies", ensuring that the specified performances are reached. It specifies in particular:
■ the responsibilities of each player, distinguishing those of the original equipment manufacturer; the organization that performed the original design and associated verification of an assembly in accordance with the standard, and of the assembly manufacturer - the organization taking responsibility for the finished assembly

- the design and verification rules, constituting a benchmark for product certification
All the component parts of the electrical switchboard are concerned by the IEC 61439 standard. Equipment produced in accordance with the requirements of this switchboard standard ensures the safety and reliability of the installation.

The main 10 functions of standard IEC 61439

For each of the following 10 functions, the standard IEC 61439 requires design verifications from the system manufacturer - mainly through type-tests - and routine verifications on each panel from the Panel Builder to achieve 3 basic goals: safety, continuity of service and compliance with end-user requirements.

\bigcirc
 Safety

■ Voltage stresses withstand capability

To withstand long term voltages, and transient and temporary overvoltages according to the insulation coordination principles and requirements.

■ Current-carrying capability

To protect against burns and to withstand temperature rise:
\square when any circuit is continuously loaded, alone, to the specified current
\square when the assembly is loaded to the specified current according to the specified load pattern (between circuits and/or as a function of the time).

■ Short-circuit withstand capability

To withstand the stresses resulting from the prospective short-circuit current and from the associated data (High forces between conductors, temp. rise in a very short time, air ionization, overpressure).
■ Protection against electric shock

- Hazardous-live-parts not to be accessible (basic protection).

ㅁ Accessible conductive parts not to become hazardous-live (fault protection).

- Protection against risk of fire or explosion
\square Resistance to internal glowing elements.
Note: Protection of persons, and optional protection of the assembly, against arcing due to internal fault can be specified through a "special test" according to IEC 61641.

(〇)
 Continuity of service

- Maintenance and modification capability

Capability to preserve continuity of supply without impairing safety during assembly maintenance or modification.
\square Electrical condition of the assembly or various circuits.
\square Speed of exchange of the functional units.

- Test facilities...
- Electro-Magnetic compatibility

To properly function (immunity) and not to generate EM disturbances (emission) in specified environmental conditions:

- Industrial networks or locations (Environment A).
\square Domestic, commercial, and light industrial locations (Environment B).

Compliance with end-user requirements

- Capability to operate the electrical installation To properly function, according to: \square the electrical diagram of the overall system and related information (voltages, coordination...),
- the specified operating facilities (e.g. free or restricted access
to Man Machine Interfaces, isolation of the outgoing circuits...).
$■$ Capability to be installed on site
\square To withstand handling, transport, storage... and installation constraints.
\square Capability to be erected and connected (type of enclosure, type, material and cross sectional areas of external conductors).
■ Protection of the assembly against mechanical and atmospheric
environmental conditions
\square Presence of water or solid foreign bodies (IP according to IEC 60529).
- External mechanical impacts (optional IK according to IEC 62262).
- Indoor or outdoor installation (humidity, UV).

Standard IEC 62208
 Empty enclosures for low-voltage switchgear and controlgear assemblies

General rules for empty enclosures

Standard IEC 62208 lay down definitions, classifications, characteristics and test requirements for the enclosures used for assemblies.
It apply to empty enclosures before installation of the devices by the panel builder, as supplied by the manufacturer.
It apply to one-piece enclosures and to enclosures supplied in kit form.

Type tests

[^4]
Life Is Un
 Schneider SElectric

Schneider Electric Industries SAS

35, rue Joseph Monier
CS 30323
92506 Rueil Malmaison Cedex
France
RCS Nanterre 954503439
Capital social $896313776 €$
www.schneider-electric.com

02-2017
UE15MK01EN

[^0]: Note: for accessories, see page 31

[^1]: Note: when the busbars are at the bottom of the cubicle, gland plates are mandatory.
 (1) For an enclosure with depth of 600 mm the compartment depth is 400 mm

[^2]: (1) For an enclosure with depth of 600 mm the compartment depth is 400 mm .

[^3]: (1) Heights according modularity ($1 \mathrm{M}=50 \mathrm{~mm}$).

[^4]: 1 - Static load
 2 - Hoisting
 3 - Axial loads of metal inserts
 4 - IK code
 5 - IP code
 6 - Thermal stability
 7 - Resistance to heat
 8 - Resistance to abnormal heat and to fire
 9 - Dielectric strength
 10 - Protective-circuit continuity
 11 - Weather resistance
 12 - Corrosion resistance
 13 - Marking

