Telemecanique XCK-ML Limit Switch
General Purpose

INTRODUCTION \& SPECIFICATIONS

Figure 1: XCK-ML1/XCK-ML5 Dimensions

XCK-ML limit switches contain two direct-opening contact blocks. The contact blocks can be accessed from the front when the cover plate is removed, and can be wired in the field without removing the enclosure from its mounting. All contacts have captive saddle-clamp terminals. The XCK-ML switch is available in direct-opening snap action (ML1) and direct opening, slow-make slow-break (ML5) versions. The heads can be indexed to any of four positions.

Table 1: General Specifications

Operating Temperature range	-13 to $158{ }^{\circ} \mathrm{F}\left(-25\right.$ to $\left.+70{ }^{\circ} \mathrm{C}\right)$ The minimum temperatures listed are based on the absence of freezing moisture or water.
Enclosure \quad NEMA Type rating CENELEC Type	$1,2,3,4,12$
IP66	
Vibration resistance	Diecast zinc alloy
Shock resistance	$25 \mathrm{G}(10-500 \mathrm{~Hz})$, conforming to IEC 68-2-6
Repeatability	50 G, conforming to IEC 68-2-27
Cable entry	0.002 in. (0.05 mm)
Approvals	PG13.5 standard; for 1/2 in. NPT use DE9RA1212 adapter

Table 2: Contact Characteristics

Rated thermal current	10 A
Rated insulation voltage	300 VAC and DC (A300 and Q300)
Contact resistance (max.)	25 mW
Cable (max.)	XESP contact: $2 \times \# 16$ AWG $\left(1.5 \mathrm{~mm}^{2}\right)$ per terminal XENP contact: $2 \times \# 14$ AWG ($2.5 \mathrm{~mm}^{2}$) per terminal
Short circuit protection	XCK-ML limit switches comply with IEC 947.5 .1 when protected with a 10 A fuse type SC, gl or N.

Table 3: Electrical Ratings: A300 (AC), Q300 (DC)

Thermal Continuous Test Current: A300 (AC) - 10 Amps; Q300 (DC) - 2.5 Amps														
Contact Rating Designation	120 V		125 V		240 V		250 V		480 V		$\leq 600 \mathrm{~V}$		Maximum Volt Amp	
	M	B	M	B	M	B	M	B	M	B	M	B	M	B
A300 (AC)	60	6.00	-	-	30	3.00	-	-	-	-	-	-	7200	720
Q300 (DC)	-	-	0.55	0.55	-	-	0.27	0.27	-	-	-	-	-	-
M = Make, B = Break														

No Polarity
Snap Action

No Polarity
Slow-Make Slow-Break

Figure 2: Wiring Diagrams

INSTALLATION AND APPLICATION

A DANGER

HAZARDOUS VOLTAGE
Disconnect all power before working on equipment.
Electric shock will result in death or serious injury.

Dwelling Requirements

For applications requiring fast motions, select a cam that operates the limit switch long enough to actuate the relays, valves, etc.

Figure 4: Using Dwell to Sustain Switch Operation

Lever Actuators

For limit switches with lever actuators, apply the actuating force as perpendicular to the lever as practical and perpendicular to the shaft axis (about which the lever rotates).

Figure 5: Examples of Actuating Force

Overtravel Limitations

Do not operate the limit switch beyond its overtravel limit position. Select an operating mechanism that ensures the limit switch operates within its range under all normal and emergency conditions. Do not use a limit switch as a mechanical stop.

Figure 6: Preventing Overtravel

Square D Company
8001 Hwy 64 East
Knightdale, NC 27545 USA
888-SquareD (778-2733)
www.squared.com

Electrical equipment should be serviced only by qualified electrical maintenance personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

