TeSys B
Bar mounted contactors

Introduction	B10/2
Applications	B10/4
Offer panorama	B10/6
Technology	

TeSys B Bar mounted contactors - Variable composition (composition is defined by customer)

Type of product	Range		Pages
CV1B - Standard performance - 690 V	$\begin{aligned} & \text { From } 80 \text { to } 700 \mathrm{~A}-\mathrm{AC}-3 \\ & \text { From } 80 \text { to } 1000 \mathrm{~A}-\mathrm{AC}-1 \end{aligned}$		B10/10
CV3B - LC1B - High performance - 1000 V	$\begin{aligned} & \text { From } 80 \text { to } 1800 \text { A - AC-3 } \\ & \text { From } 80 \text { to } 2750 \text { A - AC-1 } \end{aligned}$		B10/20

Variable composition contactors - ordering process

TeSys B Bar mounted contactors - Predefined composition
LC1B - High performance / power -

| From 750 to $1800 \mathrm{~A}-\mathrm{AC}-3$ |
| :--- | :--- |
| 1000 V |

| CRXB, CVXB, CWXB - For control of 800 to $2750 \mathrm{~A}-\mathrm{AC}-1$ |
| :--- | :--- |
| DC excitation circuit of synchronous |
| motors - 1200 V DC |

From 80 to $2750 \mathrm{~A}-\mathrm{DC}$

Variable composition contactors - TeSys B

All details and composition list in the
TeSys B Bar mounted contactors dedicated catalogue

Catalogue ref: DIA1ED2070702EN

Click here
to download

TeSys B Bar mounted contactors - from specification of customer's application

Excitation circuit of synchronous motor, magnetic latching, furnaces and induction heating applications, tramways rails grounding.. From 80 to 16300 A - AC-1

B10/43 CF452 - Customer requirements specification form

TeSys

TeSys B Bar mounted contactors

Applications

Variable composition contactors: other solution
 The use of a variable composition contactor becomes evident when the specification of the application can no

 longer be met with a standard contactor.- High power load: > 400 kW.
- AC main supply from 1000 to 3000 V .
- Very inductive DC load: L/R > 15 ms .
- DC main supply with low current but voltage over 1000 V.
- High operating frequency: up to 1200 op./h.
- High durability: several millions of operations.

Some examples

The fact sheets are available at http://www.se.com/

Application form ref. EDCED110013EN

Application form ref. EDCED110017EN

Videos

Very high power contactors - TeSys B-1 - Discovery
Discover Schneider Electric's TeSys B bar contactors that are designed to cut out considerable electric arcs. See how they are manufactured in the Schneider Electric factory and check out the presentation of the range

Application form ref. EDCED110014EN

Application form ref. EDCED110018EN

Very high power contactors-TeSys B-2-Applications Discover very high-power applications for which Schneider Electric's TeSys B bar contactors offer great advantages.

TeSys
TeSys B Bar mounted contactors
Applications

Application form ref. EDCED110015EN

Application form ref. EDCED110019EN

Application form ref. EDCED110016EN

Application form ref. EDCED110020EN

Very high power contactors -TeSys B-3-Technology
Discover how Schneider Electric's TeSys B bar contactors cut out electric arcs of up to several thousand Amps: 'magnetic blowing'.

TeSys

TeSys B Bar mounted contactors

Offer panorama

Applications

Motor switching in categories AC-3.
Resistive load switching: heating, lighting.
Distribution circuit switching: line contactor.
Supply changeover switching: circuit coupling.

- Transformer, capacitor.

Contactors
Size

Rated operational current	$\mathrm{AC}-3$
	$\overline{\mathrm{AC}-4 / \mathrm{DC}-5}$
	$\overline{\mathrm{AC}-1}$

Max. rated operational voltage

Available with configuration type command

CV1B						
F	G ${ }^{1}$	H	$J{ }^{11}$	K (with Type 1 pole)	K (with Type 3 poles)	$L{ }^{(1)}$
80 A		250 A		460 A	460 A	
$72 \mathrm{~A} /-$		205 A/-		-/-A	380 / 630 A	
80 A		300 A		630 A	630 A	
690 V ~		690 V ~		690 V	1000 V	

$A-B-C-D$

Available control circuit configuration
Type A
a.c. supply ~
d.c. supply ---

(1) CV1B legacy size 'G', 'J', 'L', CV3B legacy size 'G', 'J', 'K', please consult us.

TeSys

TeSys B Bar mounted contactors

Offer panorama

- Motor switching in categories AC-4, DC-5
- Inductive circuit switching: crane electromagnets
- High voltage d.c. switching: railway locomotives.
- Load switching at high operating rates

CV3B					CV3B and LC1B			
F	G ${ }^{1}$	H	J ${ }^{11}$	K ${ }^{(1)}$	L	M	P	R
80 A		250 A			800 A	1000 A	1500 A	1800 A
80/80 A		208/300 A			720/800 A	830/1000 A	1200/1800 A	1500/2500 A
80A		300 A			800 A	1250 A	2000 A	2750 A
1000 V ~		1000 V ~			1000 V ~	1000 V ~	1000 V ~	1000 V ~
A-B-C-D					C-D (B: special conditions - contact us)			

Type C

a.c. supply via economy resistor

Type D
d.c. supply via economy resistor

The variable composition contactor range is split into 3 groups:

■ Low power switching contactors:

- type CV1B•, 80 to 630 A
- type CV3Be, 80 to 300 A .

For motor control, the references of the CV1 and CV3 contactors are given on catalogue DIA2070702EN.
For other applications, the composition of the commercial references is described on Symbol combination table, see pages B10/29 to B10/31 or use the configuration software "bar contactor soft-customer.xls" to download on: www.se.com.

■ Increased power switching contactors:

- type LC1B •, 800 to 2750 A. References shown on B10/32 and B10/33

■ Specific contactors (large number of main poles, pole arrangement, customised fixing and dimensions, component referencing, etc.) :

- type CV1•B, 80 to 630 A
- type CV3•B, 80 to 2750 A.

To order these contactors, complete the Order form on catalogue DIA2070702EN.

1 Mounting bar
2 Rotating armature shaft
3 Electromagnet
4 Main pole
5 Instantaneous auxiliary contacts
Variable composition contactors are particularly suited for switching a.c. or d.c. motors and other circuits and are capable of providing a high number of operating cycles.
Their variable composition design allows them to be built to customer specification.

Applications

These variable composition contactors are ideally suited for the most frequently encountered applications:

■ Switching a.c. squirrel cage and slip-ring motors in all utilisation categories (AC-2, AC-3, AC-4)
■ Switching d.c. motors in all utilisation categories (DC-2, DC-3, DC-4, DC-5).
■ Switching a.c. resistive loads (category AC-1) and d.c. resistive loads (category
DC-1).
■ Switching distribution circuits (category AC-1)
■ Short-circuiting of rotor resistors.

- Switching capacitors, power factor correction.

■ Switching transformer primaries
■ Switching inductive circuits with high time constant (L/R > 15 ms)
Example: alternator excitation circuit.
■ Severe duty requirements and main pole arrangements comprising 1 to 6 N/O and/or N/C poles.

TeSys
TeSys B Bar mounted contactors

Technology

1 Fixed contact
2 Moving contact
3 Arc chamber
4 Blow-out coil
5 Pole pressure spring
6 Braided conductor
7 Rotating armature shaft (moving contact actuator)
8 Mounting bar
9 Terminal lugs

Power circuit

The principal function of a main pole is to make and break the supply current. It is designed to continuously carry its nominal operational current.

Making the current

On energisation of the electromagnet coil, the armature shaft rotates and the moving contact makes with the fixed contact. The contact pressure, maintained by the pole pressure spring, is sufficient to overcome the electrodynamic forces of transient current peaks (e.g.: switching a transformer, starting a motor, etc.).

Breaking the current

On de-energisation of the electromagnet coil, the contacts separate and electrical arcing is dissipated by the blow-out coil and arc chamber. To optimise the performance of the magnetic blow-out, the blow-out coil can be selected to suit the operational current, which is particularly important when switching d.c.
The N/C pole operates in a reverse manner to the N/O pole, i.e. the contacts are closed whilst the electromagnet coil is de-energised and open during energisation.

CV1 contactors

■ 690 V ~, 220 V --. / pole

- N/O poles 80...1000 A (PN1)
\square N/C poles 80... 1000 A (PR1).

- Variants:

\square no-load breaking poles

- N/O poles 80... 1000 A (PN5)
- N/C poles 80... 1000 A (PR5).
\square arc chambers with splitters for dispersing the electric arc: $1000 \mathrm{~V} \sim / 440 \mathrm{~V}=-$ per pole
- N/O poles 630... 1000 A (PN3)
- N/C poles 630... 1000 A (PR3).

CV3 contactors

■ 1000 V ~, 440 V --. / pole

- N/O poles 0... 300 A (PA3)
\square N/C poles 80... 300 A (PR3)
\square N/O poles 750... 2750 A (PA1).
- Variants:
- high making capacity poles 750... 2750 A (PA2)
\square high breaking capacity poles and poles with reduced safety clearances (arc chambers with closed splitters) $750 \ldots 2750$ A (PA1PX8)
- no-load breaking poles
- N/O poles 750... 2750 A (PA5).

TeSys B Bar mounted contactors

Technology

Electromagnet EB1
1 Electromagnet core
2 Coil
3 Electromagnet armature

Control circuit

$■ 2$ types of electromagnet: E shaped core and U shaped core.
■ 2 types of coil: type WB1 and type WB2.

Electromagnet with E shaped core and coil type WB1

■ Electromagnet with E shaped laminated iron core, type EB
\square with central air gap machined in armature,
\square with single coil type WB1 fitted on centre limb of core.
The upper limb incorporates a shading ring, the armature rotates.
■ Coil - direct a.c. 50 or $\mathbf{6 0 ~ H z ~ s u p p l y ~}$

- 20 to 600 V

ㅁ 1200 operations/hour.
At the moment of inrush, with the armature open, the coil impedance is low and power consumption is high.
In the sealed state the armature is closed, the coil impedance increases and power consumption is low.
The inrush current is 6 to 10 times higher than the sealed current.

- Electromagnet directly DC powered or via individual rectifier $(50-400 \mathrm{~Hz})$:
\square the electromagnet is mounted with the reduction in consumption
- 12 to 500 V

ㅁ 120 operations/hour.
■ Electromagnet powered via individual rectifier ($50-400 \mathrm{~Hz}$):
\square the electromagnet is mounted with the reduction in consumption

- 12 to 500 V
- 120 operations/hour.

At the moment of inrush, the full actuating voltage is applied to the coil and the inrush current is determined by the coil resistance. In the sealed state an additional resistor is switched automatically in series with the coil, so as to reduce power consumption.
This economy resistor is switched by a N/C auxiliary contact which is adjusted to open only when the armature is fully closed.
The inrush current is 15 to 40 times higher than the sealed current.
Coils type WB1, used in conjunction with laminated iron cores, have a much higher inrush current than sealed current, whatever the nature of the supply current.

When establishing the current and selecting the supply voltage rating, it is important to take into account the line voltage drop due to the inrush current.

Electromagnet with U shaped core and coil type WB2 for d.c. supply
■ Electromagnet with U shaped solid iron core, type EK:

- 2 similar coils type WB2 connected in series, one coil being fitted to each limb of the core
ㅁ the armature rotates
■ Electromagnet for d.c. supply
- 12 to 600 V
- 1200 operations/hour.

The coils for this type of electromagnet have a considerable number of turns so as to obtain sufficient magnetic flux to attract the armature.

Due to its simplicity and relatively slow movements the assembly is very robust and, therefore, has increased mechanical durability.

Instantaneous and time delay auxiliary contacts

Signalling, electrical interlocking and slave functions can be achieved by using auxiliary contacts.

Instantaneous auxiliary contacts suitable for use with all contactor types are available: - 1 block of 3 instantaneous N/O contacts and 2 N/C instantaneous contacts, reference LA1BN32A.

Delayed auxiliary contacts can be mounted onto contactors CV1 and CV3: - On the block LA1BN32A, 1 block of N/O ON-delayed contact + 1 N/C ON-delayed contact, references LADT0 (delay from 0.1 to 3 s), LADT2 (0.1 to 30 s), LADT4 (10 to 180 s)

- On the block ref. LA1BN32A: 1 block of N/O OFF-delayed contact + 1 N/C OFF-delayed contact, references LADR0 (delay from 0.1 to 3 s), LADR4 (10 to 180 s)

The delayed contacts are established or separate some time after the closing or opening of the contactor which operates them. This time is adjustable.

On the block LA1BN32A all TeSys D contactors additives can be mounted, with the exception of LA6DK, LAD6K, LAD8N, LADN01, LADN10.

Assembling reversing/changeover contactor pairs

Mounting accessories

For applications involving the switching of reversing motors or changeover circuits, contactors of different ratings can easily be mounted vertically and interlocked. Mechanical interlock kits are available and auxiliary contacts can be used for electrical interlocking.

TeSys

TeSys B Bar mounted contactors

Variable composition - CV1B for motor control ≤ 690 V in AC-3

Selection criteria of the CV1B contactor size - utilisation category AC-3

Rated operational current in A at $\theta \leqslant 55{ }^{\circ} \mathrm{C}$						
CV1 contactors	Size					
	F	G ${ }^{(1)}$	H	$J^{(1)}$	K	L ${ }^{(1)}$
Maximum operating rate in operating cycles/hour	1200		1200		1200	
$\leqslant 440 \mathrm{~V}$	80		250		460	
500 V	50		200		450	
690 V	35		150		400	

Nominal operational power at $\theta \leqslant 55^{\circ} \mathrm{C}$						
CV1 contactors	Size					
	F	G ${ }^{(1)}$	H	$J^{(1)}$	K	L ${ }^{(1)}$
Maximum operating rate in operating cycles/hour	1200		1200		1200	
220/230 V	22		75		140	
$380 / 400 \mathrm{~V}$	37		132		250	
$415 / 440 \mathrm{~V}$	37		140		260	
500 V	30		110		315	
660/690 V	22		110		315	

(1) CV1B legacy size 'G', 'J', 'L', please consult us.

Electrical durability (Ue $\leqslant 440$ V)

TeSys

TeSys B Bar mounted contactors

Variable composition - CV1B for motor control ≤ 690 V in AC-3

Contactor reference tables, according standard motor power ratings in category AC-3

(1) For other compositions, make up the contactor reference as explained on pages B10/29 to B10/31.
(2) Standard control circuit voltages (variable delivery, please contact us):

Volts	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{1 2 0}$	$\mathbf{1 2 7}$	$\mathbf{2 0 8}$	$\mathbf{2 2 0}$	$\mathbf{2 3 0}$	$\mathbf{2 4 0}$	$\mathbf{3 8 0}$	$\mathbf{4 0 0}$	$\mathbf{4 4 0}$
50 Hz	E5	F5	-	G5	-	M5	P5	U5	Q5	V5	R5
60 Hz	E6	-	K6	-	L6	M6	P6	U6	Q6	V6	R6
$50 / 60 \mathrm{~Hz}$	E7	F7	K7	G7	L7	M7	P7	U7	Q7	V7	R7
$\overline{---}$	ED	FD	KD	GD	-	MD	PD	UD	QD	VD	-
-+ Econ.R. ${ }^{(3)}$	ER	FR	KR	GR	-	MR	PR	UR	QR	VR	-
$-\cdots$											

For other voltages: please consult your Regional Sales Office.
(3) Econ.R.: Economy resistor.

TeSys B Bar mounted contactors

Variable composition - CV1B for resistive circuit control ≤ 690 V in AC-1

Selection criteria of the CV1B contactor size - utilisation category AC-1

Maximum rated operational current (open-mounted device)

CV1 contactors			Size					
			F	G ${ }^{(1)}$	H	$J^{(1)}$	K	L ${ }^{(1)}$
Maximum opera in operating cyc	ting rate es/hour		1200		1200		1200	
Connections								
Cable	C.s.a.	mm^{2}	25		185		-	
Bars	Number		-		-		2	
	C.s.a.	mm	-		-		40×5	
$\leqslant 40^{\circ} \mathrm{C}$		A	80		300		630	
$\leqslant 55^{\circ} \mathrm{C}$		A	80		300		600	
$\leqslant 70^{\circ} \mathrm{C}$		A	80		300		550	

(1) CV1B legacy size 'G', 'J', 'L', please consult us.

Increase in operational current by paralleling of poles
Apply the following multiplying factors to the current values given above. The factors take into account the often unbalanced current distribution between poles:

■ 2 poles in parallel: $K=1.6$
■ 3 poles in parallel: $K=2.25$
■ 4 poles in parallel: $K=2.8$.

Example: 2 poles in parallel.

Electrical durability (Ue $\leqslant 440$ V)

TeSys
TeSys B Bar mounted contactors
Variable composition - CV1B for resistive circuit control ≤ 690 V in AC-1

CV1BK

Selection criteria of the CV1B contactor size - utilisation category AC-1

Maximum possibilities of the contactor, new design (size F to H)

For another combination, please contact us.
Maximum possibilities of the standard contactor (size K)

Auxiliaries contacts

■ Size F-H, 5 instantaneous contacts (3N/C + 2N/O) + TeSys D contactor (except for LA6DK, LADN01, LADN10, LAD6K and LAD8N).

Electromagnet and coil(s)

- For direct a.c. control
- For direct d.c. control
- For a.c. or d.c. control via economy resistor
(accessories: economy resistor + contact, rectifier).

Auxiliary contact blocks per contactor							
Contact type	Composition		Control circuit			Reference	Weight
		4	direct	$\begin{aligned} & \overline{\text { direct }} \end{aligned}$	~ or -- with economy resistor		
Contactor-Size F-H-K							
Instantaneous	3	2	1	1	1	LA1BN32A	0.060
Time delay							
On-delay	1	1	1	1	1	LADT• ${ }^{(1)}$	0.060
Off-delay	1	1	1	1	1	LADR• ${ }^{(1)}$	0.060

(1) Choose additives $\angle A D T \bullet$ and LADR• from the TeSys D range.

TeSys B Bar mounted contactors

Selection criteria of the CV1B contactor size

 - utilisation category AC-2 and AC-4Maximum current broken in A
Related to maximum operating rate (operating cycles/hour) and on-load factor

CV1B contactors ${ }^{(1)}$		Size					
		F	G ${ }^{(2)}$	H	$\mathbf{J}^{(2)}$	K	$L^{(2)}$
Operating cycles/hour ${ }^{(3)}$ and on-load factor	Thermal limit zone ${ }^{(4)}$	Maximum current broken in A					
From 150 and 15 \% to 300 and 10 \%	A	165		520		1300	
From 150 and 20 \% to 600 and 10 \%	B	145		460		1150	
From 150 and 30% to 1200 and 10 \%	C	120		380		950	
From 150 and 55% to 1200 and 20%	D	90		280		700	
From 150 and 85% to 1200 and 35%	E	70		220		550	

Counter current braking (plugging)
The current varies from the maximum counter current braking value up to the nominal motor current. The current made must be compatible with the making and breaking capacities of the contactor. In most cases, breaking occurs at a current value close to the locked rotor current and contactor selection can therefore be made using the criteria for utilisation categories AC-2 and AC-4.

Electrical durability (Ue $\leqslant 440 \mathrm{~V}$)

Example: contactor size selection

For an on-load factor of 17% at 180 operating cycles per hour, the above curve indicates zone B. If the maximum current broken is 200 A , the table above will lead to the selection of a size H contactor. Referring to the electrical durability curves, it can be seen that the contactor will have a life of 1 million operating cycles. Where a higher value of electrical durability is required, 2 million operating cycles for example, size K would be recommended.
(1) To obtain the complete reference of the contactor see the Symbol combination table on pages B10/29 to B10/31. For customised compositions or dimensional specifications, please use the Order form on page B10/43 or consult your Regional Sales Office.
(2) CV1B legacy size ' G ', 'J', 'L', please consult us.
(3) Do not exceed the maximum limit for the mechanical operating cycles.
(4) See curve at foot of page for thermal limit zone.

Selection criteria of the CV1B contactor size
 - utilization category DC-1

The selection of the contactor size and number of poles to be connected in series is made according to:
■ the maximum operational voltage Ue

- the power broken
- the required electrical durability
- the nature of the load, in particular the time constant L / R
- the thermal operating conditions.

Maximum operational voltage Ue
This depends on the time constant of the circuit $L / R \leqslant 1 \mathrm{~ms}$ and the number of poles connected in series, on a single polarity or divided between both polarities (it is preferable to connect the negative polarity to the fixed contact side).

Number of poles to be connected in series according to the operational voltage (time constant of the circuit $\mathrm{L} / \mathrm{R} \leqslant 1 \mathrm{~ms}$)				
CV1B contactors ${ }^{(1)}$		Size		
		F	H	K
1 pole PN1	V	220	220	220
2 poles PN1 in series	V	440	440	440
1 pole PN3	v	-	-	500
2 poles PN3 in series	V	-	-	1000

Normal operation: Ue $\geqslant \mathrm{U}$ supply.

| Rated operational current in A at $\theta \leqslant 40^{\circ} \mathrm{C}$ | | | |
| :--- | :--- | :--- | :--- | :--- |
| | Size | | |
| | F $1 B$ | H | K |
| | 80 | 300 | 630 |

The use of a contactor selected according to the table above ensures current breaking up to 4 times the operational current.

Increase in rated operational current by connecting 2 poles in parallel
The equivalent operational current for 2 poles in parallel is equal to $2 \times \mathrm{le} \times 0.8$.

(1) To obtain the complete reference of the contactor refer to pages B10/29 to B10/31. For customised compositions or dimensional specifications, please use the Order form on page B10/43 or consult your Regional Sales Office.

Selection guide for utilisation categorie DC-1
 according to required electrical durability

 Power broken

 Power broken
 Utilisation categorie
 DC-1: Non inductive or slightly inductive loads Ue le Uex le

Electrical durability (time constant $L / R \leqslant 1 \mathrm{~ms}$)

The electrical durability can be read directly from the curves below, having previously calculated the power broken as follows:
P broken $=\mathrm{U}$ broken xI broken.
The table gives the values of Uc and Ic for the various utilisation categories.
Two-pole switching (time constant $L / R \leqslant 1 \mathrm{~ms}$)
The required durability can be obtained, depending on the application, by increasing the number of poles in series or in parallel, or by increasing the contactor size.

Number of main poles

The curve shows the number of operating cycles according to the power broken by two main poles connected in series. For a single pole, double the value of power broken before using the curves.

Thermal limit

The following limits must not be exceeded: 120 operating cycles/hour at 60% or 300 operating cycles/hour at 30% on-load factor, at the rated operational current le.

Selection criteria of the CV1B contactor size - utilisation category DC-3 and DC-5

The selection of the contactor size and number of poles to be connected in series is made according to:
■ the maximum operational voltage Ue

- the power broken
- the required electrical durability
- the nature of the load, in particular the time constant L/R
- the thermal operating conditions.

Maximum operational voltage Ue
This depends on the time constant of the circuit $L / R \leqslant 15 \mathrm{~ms}$ and the number of poles connected in series, on a single polarity or divided between both polarities (it is preferable to connect the negative polarity to the fixed contact side).

Number of poles to be connected in series according to the operational voltage (time constant of the circuit L/R $\leqslant 15 \mathrm{~ms}$)				
CV1B contactors ${ }^{(1)}$		Size		
		F	H	K
1 pole PN1	V	220	220	220
2 poles PN1 in series	V	440	440	440
1 pole PN3	V	-	-	440
2 poles PN3 in series	V	-	-	850

Normal operation: Ue \geqslant U supply.
With breaking during counter current braking (plugging): Ue $\geqslant 1.5 \mathrm{U}$ supply.

| Rated operational current in A at $\theta \leqslant 40^{\circ} \mathrm{C}$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | |
| CV1B contactors | Size | | |
| | F | H | K |
| | 80 | 300 | 630 |

The use of a contactor selected according to the table above ensures current breaking up to 4 times the operational current.

Increase in rated operational current by connecting 2 poles in parallel
The equivalent operational current for 2 poles in parallel is equal to $2 \times \mathrm{le} \times 0.8$.

(1) To obtain the complete reference of the contactor, refer to pages B10/29 to B10/31.

For customised compositions or dimensional specifications, please use the Order form on page B10/43 or consult your Regional Sales Office.

Selection criteria of the CV1B contactor size

- utilisation category DC-3 and DC-5

| Power broken | | | |
| :--- | :--- | :--- | :--- | :--- |
| Utilisation categories | U broken | I broken | P broken |
| DC-3: Shunt motors, reversing, inching | Ue | 2.5 le | Ue $\times 2.5 \mathrm{le}$ |
| DC-5: Shunt motors, reversing, inching | Ue | 2.5 le | Ue $\times 2.5 \mathrm{le}$ |

Electrical durability (time constant $\mathrm{L} / \mathrm{R} \leqslant 15 \mathrm{~ms}$)

The electrical durability can be read directly from the curves below, having previously calculated the power broken as follows:
P broken $=\mathrm{U}$ broken xI broken.
The table gives the values of Uc and Ic for the various utilisation categories.
Two-pole switching (time constant $L / R \leqslant 15 \mathrm{~ms}$)
The required durability can be obtained, depending on the application, by increasing the number of poles in series or in parallel, or by increasing the contactor size.

Number of main poles

The curve shows the number of operating cycles according to the power broken by two main poles connected in series. For a single pole, double the value of power broken before using the curves.

Thermal limit

The following limits must not be exceeded: 120 operating cycles/hour at 60% or 300 operating cycles/hour at 30% on-load factor, at the rated operational current le.

TeSys

TeSys B Bar mounted contactors

Variable composition - CV3B and LC1B for circuit control ≤ 1000 V in AC-3

Selection criteria of the CV3B and LC1B contactor size - utilization category AC-3

Rated operational current in A at $\theta \leqslant 55^{\circ} \mathrm{C}$									
Contactors CV3 and LC1B	Size								
	F	G ${ }^{(1)}$	H	$J^{(1)}$	K ${ }^{(1)}$	L	M	P	R
Maximum operating rate in operating cycles/hour	1200		1200			120	120	120	120
$\leqslant 440 \mathrm{~V}$	80		290			800	1000	1500	1800
500 V	80		250			800	1000	1500	1800
690 V	70		240			750	900	1000	1100
1000 V	70		220			500	500	600	700

Nominal operational power at $\theta \leqslant 55^{\circ} \mathrm{C}$									
Contactors CV3 and LC1B	Size								
	F	G ${ }^{(1)}$	H	$J^{(1)}$	K ${ }^{(1)}$	L	M	P	R
Maximum operating rate in operating cycles/hour	1200		1200			120	120	120	120
220/230 V	22		75			220	280	425	500
$380 / 400 \mathrm{~V}$	37		132			400	500	750	900
415 V	37		132			425	530	800	900
440 V	45		132			450	560	800	900
500 V	45		160			500	600	750	900
660/690 V	55		200			560	670	750	900
1000 V	90		250			530	530	670	750

(1) CV3B legacy size 'G', 'J', 'K', please consult us.

Electrical durability (Ue $\leqslant 440$ V)

TeSys
TeSys B Bar mounted contactors
Variable composition - CV3B and LC1B for circuit control ≤ 1000 V in AC-3

CV3BK

LC1BP

(1) For other compositions, make up the contactor reference as explained on pages B10/29 and B10/30. (2) Standard control circuit voltages (variable delivery, please contact us):

Volts	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{1 2 0}$	$\mathbf{1 2 7}$	$\mathbf{2 0 8}$	$\mathbf{2 2 0}$	$\mathbf{2 3 0}$	$\mathbf{2 4 0}$	$\mathbf{3 8 0}$	$\mathbf{4 0 0}$	$\mathbf{4 4 0}$
$\mathbf{5 0 ~ H z}$	E5	F5	-	G5	-	M5	P5	U5	Q5	V5	R5
60 Hz	E6	-	K6	-	L6	M6	P6	U6	Q6	V6	R6
$50 / 60 \mathrm{~Hz}$	E7	F7	K7	G7	L7	M7	P7	U7	Q7	V7	R7
$\overline{=-}$	ED	FD	KD	GD	-	MD	PD	UD	QD	VD	-
$=+$ Econ.R. ${ }^{(3)}$	ER	FR	KR	GR	-	MR	PR	UR	QR	VR	-

For other voltages: please consult your Regional Sales Office.
(3) Econ.R.: Economy resistor.

Contactors for motor control in category AC-3, from 750 to 1800 A (~ or - --)

Standard power ratings of 3-phase motors $50-60 \mathrm{~Hz}$ in category AC-3							Maximu rated operational current in AC-3	Instantaneous auxiliary contacts per contact		Basic reference, to be completed by adding the voltage code ${ }^{(4)}$	Frequently used voltage codes			Weight
$\begin{aligned} & 220 \mathrm{~V} 380 \mathrm{~V} \\ & 230 \mathrm{~V} 400 \mathrm{~V} \end{aligned}$		$415 \mathrm{~V}$	$440 \mathrm{~V}$	$500 \mathrm{~V}$	$\begin{aligned} & 660 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	$1000 \mathrm{~V}$								
kW	A							kg						
220	400	425	450	500	560	530	800	2	2	LC1BL33.22	G	P	V	57.000
								3	1	LC1BL33.31	G	P	V	57.000
								1	3	LC1BL33•13	G	P	V	57.000
								4	-	LC1BL33•40	G	P	V	57.000
280	500	530	560	600	670	530	1000	2	2	LC1BM33-22	G	P	V	60.000
								3	1	LC1BM33-31	G	P	V	60.000
								1	3	LC1BM33-13	G	P	V	60.000
								4	-	LC1BM33-40	G	P	V	60.000
425	750	800	800	700	750	670	1500	2	2	LC1BP33.22	G	P	V	94.000
								3	1	LC1BP33.31		P	V	94.000
								1	3	LC1BP33•13		P	V	94.000
								4	-	LC1BP33•40		P	V	94.000
500	900	900	900	900	900	750	1800	2	2	LC1BR33.22	G	P	V	129.000
								3	1	LC1BR33-31	G	P	V	129.000
								1	3	LC1BR33•13	G	P	V	129.000
								4	-	LC1BR33.40	G	P		129.000

(4) Standard control circuit voltages (variable delivery, please contact us):													
Volts	48	110	120	125	127	220	230	240	380	400	415	440	500
$\sim 50 . . .400 \mathrm{~Hz}$	-	F	K	-	G	M	P	U	Q	V	N	R	S
--	ED	FD	-	GD	-	MD	-	UD	-	-	-	RD	SD

[^0]B10/21

TeSys B Bar mounted contactors

Variable composition - CV3B and LC1B for circuit control ≤ 1000 V in AC-1

Selection criteria of the CV3B and LC1B contactor size - utilization category AC-1

(1) CV3B legacy size 'G', 'J', 'K', please consult us.

Increase in operational current by paralleling of poles
Apply the following multiplying factors to the current values given above. The factors take into account the often unbalanced current distribution between poles:

■ 2 poles in parallel: $K=1.6$
■ 3 poles in parallel: $K=2.25$
■ 4 poles in parallel: $K=2.8$.
皆
Example: 2 poles in parallel.
Electrical durability (Ue $\leqslant 440 \mathrm{~V}$)

TeSys

TeSys B Bar mounted contactors

Variable composition - CV3B and LC1B for resistive circuit control $\leq 1000 \mathrm{~V}$ in AC-1

CV3BF

LA1BN32A

Selection criteria of the CV3B and LC1B contactor size - utilization category AC-1

Maximum possibilities of the contactor
CV3B contactors are characterised by their extensive composition alternatives:

- Poles ${ }^{(1)}$

Size $\mathbf{F}-\mathbf{H}$ N/O poles	\mathbf{N} / \mathbf{C} poles
0	1
1	0
1	1
2	0
2	1
3	0
4	0

Size $\mathbf{L}-\mathbf{M}$ - \mathbf{P} - \mathbf{R}	
\mathbf{N} / \mathbf{O} poles	\mathbf{N} / \mathbf{C} poles
1	0
2	0
3	0
4	0

Auxiliaries contacts

■ Size F-H, 5 instantaneous contacts (3N/C + 2N/O) + TeSys D contactor (except for LA6DK, LAD6K, LADN01, LADN10 and LAD8N)
Electromagnet and coil(s)
■ For direct a.c. control

- For direct d.c. control
- For a.c. or d.c. control via economy resistor
(accessories: economy resistor + contact, rectifier).

Auxiliary contact blocks contactor - Size F - H							
Contact type	Composition		Control circuit			Reference	Weight
		\uparrow	direct	$\begin{aligned} & \overline{\text { direct }} \end{aligned}$	~ or - with economy resistor		
Instantaneous	3	2	1	1	1	LA1BN32A	0.060
Time delay							
On-delay	1	1	1	1	1	LADT• ${ }^{(2)}$	0.060
Off-delay	1	1	1	1	1	LADR• ${ }^{(2)}$	0.060

(1) For possible compositions, see pages B10/29 to B10/31.
(2) Choose additives $\angle A D T \bullet$ and $L A D R \bullet$ from the TeSys D range.

TeSys B Bar mounted contactors

Selection criteria of the CV3B and LC1B contactor size - utilization category AC-2 and AC-4

Thermal limits
Related to maximum operating rate (operating cycles/hour) and on-load factor

Contactors CV3 and LC1B		Size								
		F	$\mathbf{G}^{(2)}$	H	$J^{(2)}$	$\mathrm{K}^{(2)}$	L	M	P	R
Operating cycles/hour ${ }^{(3)}$ and on-load factor	Thermal limit zone ${ }^{(4)}$	Maximum current broken depending on the duty Thermal limit at ambient temperature $\leqslant 55^{\circ} \mathrm{C}$								
From 150 and 15% to 300 and 10 \%	A	165		520			2250	3000	4500	5400
From 150 and 20 \% to 600 and 10 \%	B	145		460			2000	2400	3750	5000
From 150 and 30% to 1200 and 10%	C	120		380			1500	2000	3000	3600
From 150 and 55% to 1200 and 20%	D	90		280			1000	1500	2000	2500
From 150 and 85 \% to 1200 and 35%	E	70		220			750	1000	1500	1800

Counter current braking (plugging)
The current varies from the maximum counter current braking value up to the nominal motor current. The current made must be compatible with the making and breaking capacities of the contactor. In most cases, breaking occurs at a current value close to the locked rotor current and contactor selection can therefore be made using the criteria for utilisation categories AC-2 and AC-4.

Electrical durability (Ue $\leqslant 440 \mathrm{~V}$)

Example:

For an on-load factor of 17% at 180 operating cycles per hour, the above curve indicates zone B. If the maximum current broken is 90 A , the table above will lead to the selection of a size F contactor. Referring to the electrical durability curves, it can be seen that the contactor will have a life of 1100000 operating cycles. Where a higher value of electrical durability is required, 2 million operating cycles for example, size H would be recommended.

Electrical durability (Ue $\leqslant 690$ V)

Control of 3 phase asynchronous squirrel cage motors with "motor stalled" stop. The current Ic cut in AC-4 is $6 \times \mathrm{le}$. ($\mathrm{le}=$ rated current drawn by the motor).

(1) To obtain the complete reference of the contactor see the Symbol combination table on pages B10/29 to B10/31. For customised compositions or dimensional specifications, please use the Order form on page B10/43 or consult your Regional Sales Office.
(2) CV3B legacy size ' G ', 'J', 'K', please consult us.
(3) Do not exceed the maximum limit for the mechanical operating cycles.
(4) See curve at the previous page for thermal limit zone.

Selection criteria of the CV3B and LC1B contactor size - utilization category DC-1

The selection of the contactor size and number of poles to be connected in series is made according to:
■ the maximum operational voltage Ue

- the power broken
- the required electrical durability
- the nature of the load, in particular the time constant L/R
- the thermal operating conditions.

Maximum operational voltage Ue

This depends on the time constant L/R of the circuit and the number of poles connected in series, on a single polarity or divided between both polarities (it is preferable to connect the negative polarity to the fixed contact side).

Number of poles to be connected in series according to the operational voltage

Operational voltage	500 V	1
1000 V	2	
1500 V	Please, consult us.	

Normal operation: Ue $\geqslant \mathrm{U}$ supply.

Rated operational cur Contactor size CV3B		CV3B and LC1B			
F	H	L	M	P	R
80	300	800	1000	1800	2500

The use of a contactor selected according to the table above ensures current breaking up to 4 times the operational current.

Increase in rated operational current by connecting 2 poles in parallel
The equivalent operational current for 2 poles in parallel is equal to $2 \times$ le $\times 0.8$.

(1) To obtain the complete reference of the contactor refer to pages B10/29 and B10/30. For customised compositions or dimensional specifications, please use the Order form on page B10/43 or consult your Regional Sales Office.

Selection criteria of the CV3B and LC1B contactor size - utilization category DC-1

Power broken			
Utilisation category	U broken	I broken	P broken
DC-1: Non inductive or slightly inductive loads	Ue	le	Uexle

Electrical durability (time constant L/R $\leqslant 1 \mathrm{~ms}$)
The electrical durability can be read directly from the curves below, having previously calculated the power broken as follows:
P broken $=\mathrm{U}$ broken xI broken.
The table gives the values of Uc and Ic for the various utilisation categories.

Power broken per pole (time constant L/R $\leqslant 1 \mathrm{~ms}$)

The required durability can be obtained, depending on the application, by increasing the number of poles in series or in parallel, or by increasing the contactor size.

Number of main poles

The curve shows the number of operating cycles according to the power broken by two main poles connected in series. For a single pole, double the value of power broken before using the curves.

Thermal limit

The following limits must not be exceeded: 120 operating cycles/hour at 60% or 300 operating cycles/hour at 30% on-load factor, at the rated operational current le.

Selection criteria of the CV3B and LC1B contactor size - utilization category DC-3 and DC-5

The selection of the contactor size and number of poles to be connected in series is made according to:
■ the maximum operational voltage Ue

- the power broken
- the required electrical durability
- the nature of the load, in particular the time constant L / R
- the thermal operating conditions.

Maximum operational voltage Ue
This depends on the time constant L / R of the circuit and the number of poles connected in series, on a single polarity or divided between both polarities (it is preferable to connect the negative polarity to the fixed contact side).

Number of poles to be connected in series according to the operational voltage and time constant L/R (in ms) of the circuit							
Time constant in ms		15	30	60	90	120	150
Operational voltage	125 V	1	1	1	2	2	2
	225 V	1	1	2	3	3	4
	330 V	1	2	3	3	4	-
	440 V	1	2	3	4	-	-
	850 V	2	3	4	-	-	-
	$\begin{aligned} & 1200 \text { V } \\ & \text { (consult us) } \end{aligned}$	3	4	-	-	-	-
	$\begin{aligned} & 1500 \mathrm{~V} \\ & \text { (consult us) } \end{aligned}$	4	-	-	-	-	-

Normal operation: Ue $\geqslant \mathrm{U}$ supply.
With breaking during counter current braking (plugging): Ue $\geqslant 1.5 \mathrm{U}$ supply.
Rated operational current in A at $\theta \leqslant 40^{\circ} \mathrm{C}$

Contactor size CV3B ${ }^{(1)}$		CV3B and LC1B			
F	H	L	M	P	R
80	300	800	1000	1800	2500

The use of a contactor selected according to the table above ensures current breaking up to 4 times the operational current.

Increase in rated operational current by connecting 2 poles in parallel
The equivalent operational current for 2 poles in parallel is equal to $2 \times \mathrm{le} \times 0.8$.

(1) To obtain the complete reference of the contactor refer to pages B10/29 and B10/30. For customised compositions or dimensional specifications, please use the Order form on page B10/43 or consult your Regional Sales Office.

Selection criteria of the CV3B and LC1B contactor size

 - utilization category DC-3 and DC-5| Power broken | | | | |
| :--- | :--- | :--- | :--- | :--- |
| Utilisation category | U broken | I broken | P broken | |
| DC-3: Shunt motors, reversing, inching | Ue | 2.5 le | Ue $\times 2.5 \mathrm{le}$ | |
| DC-5: Series motors, reversing, inching | Ue | 2.5 le | Ue $\times 2.5 \mathrm{le}$ | |
| | | | | |

Electrical durability (time constant $L / R \leqslant 15 \mathrm{~ms}$)
The electrical durability can be read directly from the curves below, having previously calculated the power broken as follows:
P broken $=\mathrm{U}$ broken $\mathrm{x} \operatorname{l}$ broken.
The table gives the values of Uc and Ic for the various utilisation categories.

Power broken per pole (time constant $\mathrm{L} / \mathrm{R} \leqslant 15 \mathrm{~ms}$)

The required durability can be obtained, depending on the application, by increasing the number of poles in series or in parallel, or by increasing the contactor size.

Example: 30 kW motor, $500 \mathrm{~V}-70$ A in category DC-3: Pbroken $=$ Ue $\times 2.5 \mathrm{Ie}=500 \times 2.5 \times 70=$ 86 kW or 43 kW per pole.
For a 2-pole size F contactor, the curve gives an electrical durability of 6×10^{5} operating cycles.

Electrical durability depending on the time constant

■ According to the time constant L/R.

- L/R $\leqslant 15 \mathrm{~ms}$, read the number of operating cycles directly from the curves.

■ $15<\mathrm{L} / \mathrm{R} \leqslant 30 \mathrm{~ms}$, the number of operating cycles is equal to the number read
from the curves $\times \frac{15}{L / R}$.
■ L/R $>30 \mathrm{~ms}$, please consult your Regional Sales Office.

Thermal limit

The following limits must not be exceeded: 120 operating cycles/hour at 60% or 300 operating cycles/hour at 30% on-load factor, at the rated operational current le.

From assembly definition to contactor ordering

Contactor assembly definition

The criteria required to define the composition of a contactor are:
■ the number of N/O and N/C power poles
■ the current and power supply voltage
(note: on a d.c. supply, the time constant $\frac{L}{R}$ of the load must be known in order to define the number of poles to be
wired in series to break the arc)
■ the control circuit voltage

- the number of auxiliary contacts.

Contactor ordering - product reference composition

For all contactors:
■ configuration software "bar contactor soft-customer.xls"
Link for download: https://www.se.com/ww/en/product-range-download/667-tesys-b/\#/software-firmware-tab
■ from order form in TeSys B catalogue ref. DIA2070702EN.
For contactors CV1BF/BH/BK, CV3BF/BH:

- software or selection tables below.

Checking of contactor possible assemblies
CV1B and CV3B have some restrictions:

- in rated operational current (le) per power pole
- in number of N/O - N/C power poles
- in number of auxiliary contacts.

Please refer to tables below.

Rated operational current per poles - codes per contactor type				
Contactor type		CV1BF CV3BF	CV1BH CV3BH	CV1BK
Rated operational current ${ }^{(1)}$	11 A	E	-	-
	13A	M	-	-
	20 A	N	-	-
	40 A	P	-	-
	50 A	Q	Q	-
	80 A	F	F	-
	125A	-	R	1
	200 A	-	G	S
	250 A	-	-	H
	300 A	-	H	-
	320 A	-	-	-
	400 A	-	-	U
	470 A	-	-	-
	500 A	-	-	V
	630 A	-	-	K
	1000 A	-	-	-
	0 no magnetic blowing	Z	Z	Z

(1) Other rating: contact us.

CV1B contactors: maximum number of power poles

Contactor type	CV1BF		CV1BH		CV1BK	
Pole type	N/O	N/C	N/O	N/C	N/O	N/C
Number of poles	5	0	4	0	4	0
	0	2	0	2	0	2
	2	1	2	1	2	1

CV3B contactors: maximum number of power poles

Contactor type	CV3BF		CV3BH	
Pole type	N/O	N/C	N/O	N/C
Number of poles	5	0	4	0
	0	2	0	2
	1	2	-	-
	3	1	2	1
CV1B/CV3B contactors: maximum number of auxiliary contacts				
Contactor type	CV1B		CV3B	
Pole type	N/O	N/C	N/O	N/C

Examples

■ Switching of single-phase capacitor: 400 V - $80 \mathrm{~A}-1 \mathrm{~N} / \mathrm{O}$ main pole. $220 \mathrm{~V} / 50 \mathrm{~Hz}$.
control circuit voltage, 3 N/O and 2 N/C auxiliary contacts. Reference: CV1BF1F0ZM5A.
■ Switching of d.c. heating circuits: $800 \mathrm{~V}-250 \mathrm{~A}-2 \mathrm{~N} / \mathrm{O}$ main poles $-48 \mathrm{~V}=-$.
control circuit, instantaneous auxiliary contact 1 N/O + 1 on-delay. Reference: CV3BH2H0ZEDA + LADT0, 2 or 4.

Other versions

To obtain a composition with more main poles or with more than 4 auxiliary contacts,
please use order form CF 452, on catalogue DIA2070702EN.

TeSys

TeSys B Bar mounted contactors

Variable composition - CV1B and CV3B ordering process

Product reference coding table											
				$\frac{\mathrm{N}}{\mathrm{~N}}$							$$
Type of contactor related to application											
$\sim 690 \mathrm{~V}$, --. $220 \mathrm{~V} / \mathrm{pole}$			CV1B								
$\sim 1000 \mathrm{~V}$, -.- $440 \mathrm{~V} /$ pole			CV3B								
Contactor size AC-1/AC-3											
CV1: 80/80 A	CV3: 80			$\mathrm{F}^{\text {* }}$							
CV1: 300/250 A	CV3: 30			H^{\star}							
Number of poles											
N/O poles	$0 \mathrm{~N} / \mathrm{O}$				0						
	$1 \mathrm{~N} / \mathrm{O}$				1						
	$2 \mathrm{~N} / \mathrm{O}$				2						
	$3 \mathrm{~N} / \mathrm{O}$				3						
	$4 \mathrm{~N} / \mathrm{O}$				4						
N/C poles	$0 \mathrm{~N} / \mathrm{C}$						0				
	1 N/C						1				
Operational current (determines the blow-out coil size)											
CV1BF/CV3BF	CV1BH/CV3BH										
AC DC	AC	DC									
0 A breaking	0 A breaking					Z		Z			
0.9 A	0.7 A	1.05A				A		A			
$1.75 \mathrm{~A} \quad 1.9 \mathrm{~A}$	1.25A	1.95A				B		B			
3.6A 4A	2.5 A	3.85A				C		C			
$6.8 \mathrm{~A} \quad 7.6 \mathrm{~A}$	4.7 A	7.5A				D		D			
11 A 12A	8 A	12A				E		E			
$13 \mathrm{~A} \quad 14.5 \mathrm{~A}$	10A	15A				M		M			
20 A 22A	17 A	24 A				N		N			
$40 \mathrm{~A} \quad 45 \mathrm{~A}$						P		P			
50 A 55A	60 A	90 A				Q		Q			
80 A 80A	80 A	120 A				F		F			
125 A	130 A	190 A				R		R			
200 A	200 A	200 A				G		G			
300 A	300 A	300 A				H		H			
Control circuit voltage											
24 V									B		
48 V									E		
110 V									F		
120 V									K		
127 V									G		
208 V									L		
220 V									M		
230 V									P		
240 V									U		
380 V									Q		
400 V									V		
Operating frequency											
50 Hz										5	
60 Hz										6	
$50 / 60 \mathrm{~Hz}$ (with rectifier + economy resistor)										7	
=--										D	
--- with economy resistor										R	
Auxiliary contacts (LA1BN32 + additives (fitted as standard))											
Instantaneous	$3 \mathrm{~N} / \mathrm{O}+2 \mathrm{~N} / \mathrm{C}$										A

To check whether the symbol combinations are possible, refer to the selection information and guide on page B10/29.
If in doubt, fill out order form CF 452, on page B10/43.
\star Can use any additives in the range of contactors TeSys D except LA6DK, and LAD6K LAD8N.

Important information for use by Schneider Electric
To place an order in SAP GRC switch-LOGOS
Example: Order the contactor CV1BH2HCZM5A
■ enter in the Reference product "CV1BH"
■ in the field "Technical text", specify "CV1BH2H02M5A".

TeSys
TeSys B Bar mounted contactors
Variable composition - CV1BK with PN1 or PN3 poles - ordering process

To check whether the symbol combinations are possible, refer to the selection information and guide on page B10/29.
If in doubt, fill out order form CF 452, on page B10/43.

Contactors for motor control in category AC-3, from 750 to 1800 A (~ or - -)											
3-pole contactors											
Standard power ratings of 3-phase motors $50-60 \mathrm{~Hz}$ in category AC-3							Rated Instan-opera- taneous tional auxiliary current contacts in AC-3 440 V up to			Basic reference, to be completed by adding the voltage code (1)	Weight
$\begin{aligned} & 220 \mathrm{~V} 380 \\ & 230 \mathrm{~V} 400 \end{aligned}$		$\begin{array}{r} 660 \mathrm{~V} \\ \mathrm{~V} 415 \mathrm{~V} 440 \mathrm{~V} 500 \mathrm{~V} 690 \mathrm{~V} \end{array}$				1000 V					
kW	A				kg						
220	400	425	450	500	560	530	750	2	2	LC1BL33.22	57.000
								3	1	LC1BL33.31	57.000
								1	3	LC1BL33•13	57.000
								4	-	LC1BL33•40	57.000
280	500	530	560	600	670	530	1000	2	2	LC1BM33-22	60.000
								3	1	LC1BM33-31	60.000
								1	3	LC1BM33•13	60.000
								4	-	LC1BM33•40	60.000
425	750	800	800	750	750	670	1500	2	2	LC1BP33.22	94.000
								3	1	LC1BP33•31	94.000
								1	3	LC1BP33•13	94.000
								4	-	LC1BP33•40	94.000
500	900	900	900	900	900	750	1800	2	2	LC1BR33.22	129.000
								3	1	LC1BR33.31	129.000
								1	3	LC1BR33•13	129.000
								4	-	LC1BR33•40	129.000

Contactors for control in category AC-1, from 800 to 2750 A (~or ---)

Single, 2, 3 or 4-pole contactors

Maximum operational current in AC-1 ($\theta \leqslant 40^{\circ} \mathrm{C}$)	Number of poles 1	Ins	\qquad	Basic reference, to be completed by adding the voltage code (1)	Weight
A					kg
800	1	2	2	LC1BL31•22	31.000
		3	1	LC1BL31•31	31.000
		1	3	LC1BL31•13	31.000
		4	-	LC1BL31•40	31.000
	2	2	2	LC1BL32•22	44.000
		3	1	LC1BL32•31	44.000
		1	3	LC1BL32•13	44.000
		4	-	LC1BL32•40	44.000
	3	2	2	LC1BL33.22	57.000
		3	1	LC1BL33.31	57.000
		1	3	LC1BL33•13	57.000
		4	-	LC1BL33•40	57.000
	4	2	2	LC1BL34•22	71.000
		3	1	LC1BL34•31	71.000
		1	3	LC1BL34•13	71.000
		4	-	LC1BL34•40	71.000

(1) Standard control circuit voltages (for other voltages, please consult your Regional Sales Office):

Volts	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{1 2 0}$	$\mathbf{1 2 5}$	$\mathbf{1 2 7}$	$\mathbf{2 2 0}$	$\mathbf{2 3 0}$	$\mathbf{2 4 0}$	$\mathbf{3 8 0}$	$\mathbf{4 0 0}$	$\mathbf{4 1 5}$	$\mathbf{4 4 0}$	$\mathbf{5 0 0}$
$\sim 50 \ldots 400 \mathrm{~Hz}$	-	F	K	-	G	M	P	U	Q	V	N	R	S
--	ED	FD	-	GD	-	MD	-	UD	-	-	-	$R D$	SD

For voltages other than those indicated above, replace the p in the reference with the the operational voltage (3 figures) and the type of current (2 letters: AC for a.c. supply and DC for d.c. supply). Example: 82 V d.c., the reference becomes LC1BP33082DC22.

TeSys
TeSys B Bar mounted contactors
Predefined composition - LC1B contactor

LC1BP33

Contactors for control in category AC-1, from 800 to 2750 A (~ or $=-$)					
Single, 2, 3 or 4-pole contactors					
Maximum operational current in AC-1 $\left(\theta \leqslant 40^{\circ} \mathrm{C}\right)$	Number of poles 1		aneous y y 4	Basic reference, to be completed by adding the voltage code (1)	Weight
A					kg
1250	1	2	2	LC1BM31•22	34.000
		3	1	LC1BM31•31	34.000
		1	3	LC1BM31•13	34.000
		4	-	LC1BM31•40	34.000
	2	2	2	LC1BM32-22	47.000
		3	1	LC1BM32-31	47.000
		1	3	LC1BM32•13	47.000
		4	-	LC1BM32•40	47.000
	3	2	2	LC1BM33-22	60.000
		3	1	LC1BM33.31	60.000
		1	3	LC1BM33•13	60.000
		4	-	LC1BM33•40	60.000
	4	2	2	LC1BM34•22	74.000
		3	1	LC1BM34*31	74.000
		1	3	LC1BM34•13	74.000
		4	-	LC1BM34•40	74.000
2000	1	2	2	LC1BP31•22	41.000
		3	1	LC1BP31•31	41.000
		1	3	LC1BP31•13	41.000
		4	-	LC1BP31•40	41.000
	2	2	2	LC1BP32•22	65.000
		3	1	LC1BP32•31	65.000
		1	3	LC1BP32•13	65.000
		4	-	LC1BP32•40	65.000
	3	2	2	LC1BP33.22	94.000
		3	1	LC1BP33.31	94.000
		1	3	LC1BP33•13	94.000
		4	-	LC1BP33•40	94.000
	4	2	2	LC1BP34•22	120.000
		3	1	LC1BP34•31	120.000
		1	3	LC1BP34*13	120.000
		4	-	LC1BP34•40	120.000
2750	1	2	2	LC1BR31•22	52.000
		3	1	LC1BR31•31	52.000
		1	3	LC1BR31•13	52.000
		4	-	LC1BR31•40	52.000
	2	2	2	LC1BR32•22	85.000
		3	1	LC1BR32•31	85.000
		1	3	LC1BR32•13	85.000
		4	-	LC1BR32•40	85.000
	3	2	2	LC1BR33.22	129.000
		3	1	LC1BR33.31	129.000
		1	3	LC1BR33•13	129.000
		4	-	LC1BR33•40	129.000
	4	2	2	LC1BR34•22	160.000
		3	1	LC1BR34•31	160.000
		1	3	LC1BR34•13	160.000
		4	-	LC1BR34•40	160.000

(1) See previous page.

TeSys

TeSys B Bar mounted contactors

Predefined composition - LC1B contactor - Accessories and spare parts

PA1LB50

EZ2LB0601

Spare parts				
Description	For contactor	Composition	Reference	Weight kg
Instantaneous	LC1B	$1 \mathrm{~N} / \mathrm{O}$	ZC4GM1	0.030
blocks		$1 \mathrm{~N} / \mathrm{C}$	ZC4GM2	0.030
Description	For contactor	Number of sets required per contactor pole	Set reference	Weight kg
Set of contacts (1 moving contact, 1 fixed contact)	LC1BL	1	PA1LB80	0.420
	LC1BM	1	PA1LB80	0.420
	LC1BP	2	PA1LB80	0.420
	LC1BR	3	PA1LB80	0.420
Description	For contactor		Reference	Weight kg
Moving contact only (for 1 finger)	LC1B		PA1LB75	0.220
Fixed contact only (for 1 finger)	LC1B		PA1LB76	0.200
Blow-out horn only (for 1 finger)	LC1B		PA1LB89	0.120
Arc chamber (for 1 contactor pole)	LC1BL		PA1LB50	3.700
	LC1BM		PA1LB50	3.700
	LC1BP		PA1PB50	6.200
	LC1BR		PA1RB50	8.500

Mounting accessories				
Description	For contactor	Sold in lots of	Unit reference	Weight
				kg
Bar support bracket for mounting on 120	LC1BL to BR	2	LA9B103	1.620

ounting on 120
or 150 mm centres

Assembly of two vertically mounted contactors by the customer			
Description \quad For contactor	Reference		Weight
---:			
$\mathbf{k g}$			

Specifications

■ Positive mechanical interlock between two vertically mounted contactors of the same or different ratings.
■ Connecting rod with cranks mounted on the right-hand, pole side.
■ Vertical fixing centres of the two contactors: 600 mm .

Description	Specification	Height	Sold in lots of	Unit reference	Weight
Notched mounting rails used as uprights and as equipment support	2 mm steel, with zinc chromate treatment	$\mathbf{m m}$	1650	4	AM1EC165

Introduction

Variable composition contactors CVE, CWE, CVX, CRX, CWXB are designed for switching the excitation circuits of synchronous machines, in particular electrical power station generators, for operational currents from 80 to 2750 A .
Example: Static excitation generator.

Basic scheme

1 Excitation contactor
2 Thyristor bridge
3 Discharge resistor Rd
4 Excitation winding

Operating principle

The voltage delivered by the generator is related to the current flowing through the excitation winding 4.

Start-up phase

- The contactor 1 closes, off load.
- An adjustable auxiliary power supply generates current in the excitation winding 4 to allow power-up of the generator.
\square When the voltage delivered by the generator is sufficient to supply the excitation winding 4 via a thyristor bridge 2 , the auxiliary supply is switched off.

Stop phase

When a stop instruction is received, the thyristor bridge 2 operates for a few seconds as an inverter, then the excitation contactor 1 opens.
The function of the N/C pole is to discharge residual electromagnetic energy from the excitation winding 4 via the discharge resistor Rd 3 .

Under normal operating conditions, breaking is therefore easy, especially as the N/O poles and the N/C pole are make before break.
However, in the event of a problem, the contactor must be able to break.

Contactor selection

Selection is done according to the nominal operating voltage of the machine and the necessity or not to fully isolate the thyristor bridge coil of the power supply (1,2 , or 3 N/O poles).

Note: The N/C pole, which is used for machine de-excitation, has no arc chambers. Its breaking capacity is nil. Re-energisation of the contactor must therefore be avoided during the de-excitation phase.
If there is any risk of this happening, it is advisable to add an off-delay function that prevents pick-up of the contactor for the 10 seconds following drop-out.

TeSys B Bar mounted contactors

Predefined composition - CVEB, CWEB, CVXB, CRXB, CWXB contactors
for synchronous motor excitation circuit

CVEB and CWEB contactors composition:
■ 2 or N/O poles with magnetic blow-out (80... 300 A)

- 1 N/C pole without blow-out, overlapping contacts (possible mounting of a
blow-out device)
■ 1 electromagnet with d.c. supply
ㅁ either mechanical latching (CWEB)
- or with economy resistor (CVEB).

■ 1 ZC4GM auxiliary contact or 1 or 2 instantaneous auxiliary contact heads (3 to
6 N/O contacts +2 to 4 N/C contacts).

- 1 mounting bar, 1 rotary drive shaft.

The following can be added:
■ 1 or 2 blocks of 4 instantaneous auxiliary contacts LADN••, without increasing
the overall size of the contactor
■ or 1 time delay block LADT• or LADR•
Note: it is not possible to fit a mechanical latch block type LA6DK•• on these contactors.

Characteristics						
CVEB, CWEB contactor sizes			F		H	
N/O pole			1 pole	2 poles	1 pole	2 poles
Rated current	$\theta \leqslant 40^{\circ} \mathrm{C}$	A	80	80	300	300
Maximum operating voltage	d.c	V	220	440	220	440
Rated insulation voltage According to IEC 60664-1	d.c	V	690	690	690	690
Making capacity	d.c	A	1600	1600	4000	4000
Breaking capacity	d.c $\mathrm{L} / \mathrm{R}=15 \mathrm{~ms}$	A	240	240	900	900
Overlap time with the N/C pole		ms	2	2	2	2
N/C pole						
Rated current	$\theta \leqslant 40^{\circ} \mathrm{C}$	A	80	80	300	300
Making capacity	d.c	A	1600	1600	4000	4000
Breaking capacity	d.c $\mathrm{L} / \mathrm{R}=15 \mathrm{~ms}$	A	0	0	0	0
Permissible current	For 10 s	A	480	480	1400	1400

TeSys
TeSys B Bar mounted contactors
Predefined composition - CVEB, CWEB, CVXB, CWXB contactors
for synchronous motor excitation circuit

CVXB, CRXB and CWXB contactors composition:

■ 1 to 3 N/O poles with magnetic blow-out (80... 2750 A)

- 1 N/C pole without blow-out, overlapping contacts (possible mounting of a blowout device)
■ 1 electromagnet with d.c supply
\square or with economy resistor (CVXB)
\square either with magnetic latching (CRXB)
\square either with mechanical latching (CWXB)
- 1 ZC4GM auxiliary contact or 1 or 2 instantaneous auxiliary contacts (3 to 6 N/O contacts +2 to 4 N/C contacts)
- 1 mounting bar, 1 rotary drive shaft.

The following can be added:

- 1 or 2 blocks of 4 instantaneous auxiliary contacts type LADNee, without increasing the overall size of the contactor.
■ or 1 time delay block type LADT• or LADR•
Note: it is not possible to fit a mechanical latch block type LA6DK•• on these contactors.

(1) CRX, CVXB legacy size 'G', 'J'. Please consult us.

TeSys
TeSys B Bar mounted contactors
Predefined composition－CVEB，CWEB，CVXB，CWXB contactors
for synchronous motor excitation circuit

CVEB，CWEB contactors equipped with type 1 （PN1）N／O poles

Control circuit						With economy resistor	With mechanical latching		
Operational voltage	Number of poles N／O d	Number of poles N／C	Instantan auxiliary	tacts （2）	Rated operational current	Basic reference to be Basic reference to be completed by adding completed by adding the code of the blow－the code of the blow－ out coils ${ }^{(1)}$ ，of the out coils ${ }^{(1)}$ ，of the control voltage ${ }^{(2)}$ control voltage ${ }^{(2)}$ and of the aux． and of the aux． contacts contacts			Scheme
V					A				
220V DC	1	1	1,3 or 6	1，2 or 4	80	CVEBF1•1•＊ゃ๑	CWEBF1•1•＊＊॰		1
					200	CVEBG1•1•••๑	CWEBG1•1•••๑		1
					300	CVEBH1•1••••	CWEBH1•1••••		1
440 V DC	2	1	1,3 or 6	1，2 or 4	80	CVEBF2•1•＊＊๑	CWEBF2•1•⿰๑๑		2
					200	CVEBG2•1••＊॰	CWEBG2•1•＊＊॰		2
					300	CVEBH2•1•••๑	CWEBH2•1••७๑		2
CVX B，CWX B and CRX B contactors equipped with N／O poles type PA3（ F to H），PN3（J and K）or PA1（L to R）									
Control circuit						Economy resistor	Mechanical Magnetic latchinglatching		
Operational voltage	Number of poles N／O ${ }^{d}$	Number of poles N／C	Instantan auxiliary	tacts ${ }^{\text {（2）}}$	Rated operational current	Basic reference to be completed by adding the code of the blow－ out coils ${ }^{(1)}$ ，of the control voltage ${ }^{(2)}$ and of the aux． contacts ${ }^{(3)}$	Basic reference to be Basic reference to be completed by adding completed by adding the code of the blow－the code of the blow－ out coils ${ }^{(1)}$ ，of the out coils ${ }^{(1)}$ ，of the control voltage ${ }^{(2)}$ control voltage ${ }^{(2)}$ and of the aux． and of the aux． contacts contacts		Scheme
V					A				
440V DC	1	1	1,3 or 6	1，2 or 4	80	CVXBF1•1•＊＊๑	CWXBF1•1•⿰७๑	CRXBF1－1•＊＊๑	1
					300	CVXBH1•1•＊＊๑	CWXBH1•1••••	CRXBH1•1•••๑	1
					630	CVXBK1•1•＊＊๑	CWXBK1•1・セゃ๑	CRXBK1•1••＊॰	1
					800	CVXBL1•1•＊＊॰	CWXBL1•1・ャッ๑	CRXBL1•1•＊＊॰	1
					1250	CVXBM1•1・セ＊๑	CWXBM1•1•⿰७๑	CRXBM1•1・セ＊＊	1
					2000	CVXBP1•1•＊＊๑	CWXBP1•1•⿰ゃ๑	CRXBP1•1•＊＊॰	1
					2750	CVXBR1•1•⿰७๑	CWXBR1•1••••	CRXBR1•1•⿰७๑	1
850V DC	2	1	1，3 or 6	1，2 or 4	80	CVXBF2•1•＊＊๑	CWXBF2•1•⿰७๑	CRXBF2•1•••๑	2
					300	CVXBH2•1•＊＊＊	CWXBH2•1•＊＊•	CRXBH2•1•＊＊॰	2
					630	CVXBK2•1•＊＊๑	CWXBK2•1・セ७๑	CRXBK2•1••＊＊	2
					800	CVXBL2•1•＊＊॰	CWXBL2•1•••๑	CRXBL2•1•＊＊॰	2
					1250	CVXBM2•1•••๑	CWXBM2•1••＊॰	CRXBM2•1••••	2
					2000	CVXBP2•1•＊＊๑	CWXBP2•1•＊＊•	CRXBP2•1•＊＊॰	2
					2750	CVXBR2•1•＊＊•	CWXBR2•1••••	CRXBR2•1•＊＊＊	2
1000V DC	3	1	1,3 or 6	1，2 or 4	80	CVXBF3•1•＊＊॰	CWXBF3•1•••๑	CRXBF3－1•＊＊॰	3
					300	CVXBH3•1•••๑	CWXBH3•1•••๑	CRXBH3－1•••๑	3
					630	CVXBK3•1•••๑	CWXBK3•1•••๑	CRXBK3•1•••๑	3
1200V DC	3	1	1,3 or 6	1，2 or 4	800	CVXBL3•1•＊＊॰	CWXBL3•1•••๑	CRXBL3•1•＊＊॰	3
					1250	CVXBM3•1•＊＊๑	CWXBM3•1•••๑	CRXBM301•＊＊＊	3
					2000	CVXBP3＊1•＊＊॰	CWXBP3•1••••	CRXBP301••＊॰	3
					2750	CVXBR3•1••＊๑	CWXBR31•＊＊	CRXBR3•1••••	3

（1）For the codes of the blow－out coils，please refer next page．
（2）Existing control voltages（other voltages，please consult us）．

Volts	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{1 2 5}$	$\mathbf{2 2 0}$	$\mathbf{2 3 0}$	$\mathbf{2 4 0}$	$\mathbf{2 5 0}$
DC	BD^{\star}	ED^{\star}	FD	GD	MD	PD	-	UD
AC	B^{\star}	$\mathrm{E} 7^{\star}$	F 7	$\mathrm{G7}$	M 7	P 7	U 7	-

[^1]
TeSys

TeSys B Bar mounted contactors

Predefined composition - CVE, CWE, CVX, CRX, CWXB contactors for synchronous motor excitation circuit

Ordering process
Coding principle of an excitation contactor product reference

(1) Standard construction without blow-out: code Y.

1 - Contactor

3 - Type of N/O poles
■ E = PN1
■ X= PA3 (FB to HB), PN3 (KB) and PA1 (LB to RB)
5 - Size of the contactor (in A)

F	H	K	L	M	P	R
80	300	630	800	1250	2000	2750

2 - Type of control circuit of the contactor
■ V = Electromagnet with economy resistor

- R = Electromagnet with magnetic latching

■ W = Electromagnet with mechanical latching
4 - Evolution

6 - Number of N/O poles

1,2 or 3 according to the scheme used by the customer

7 - Operating current (le)

Code	Contactor											
		Rep* blow-out	$\begin{array}{\|l\|l\|} \text { BH } \\ \text { le } \end{array}$		Rep* blow-out					Rep* blow-out		
A	1	05										
B	1.9	07										
C	4	10										
D	7,6	14										
E	12	18										
M	12	20										
N	22	25										
P	45	9										
Q	55	7										
F	80	4										
R												
G			200	2								
H			300	1								
T												
U							400			53		
J												
V							500			52		
K							630			51		
Y	Only for CV1 with pole type PN5 ou PR5 without blow-out											
8-1 N/C pole				9-Control voltage								
				Code	BD	ED	FD	GD	MD			UD
10 - Block of auxiliary contacts				Uc (V DC)	24	48	110	125	220			250
■ 1 = 1 ZC4GM1				Code	B7	E7	F7	G7	M7	P7	U7	
- A = 1 block type LA1BN32				Uc (V AC)	24	48	110	127	220	230	240	

- B = 2 blocks type LA1BN32 (standard configuration)

Performance label for the excitation contactors

CR1B Magnetic latching contactors introduction

The magnetic latching contactors are equipped with a specific electromagnet allowing them to maintain position "ON" although the coil is fed by any current.

Use
The specific properties of magnetic latching contactors make them suitable for many uses:

Properties	Use
Memory retention of the sequence in automatic equipment, in the event of loss of the control voltage.	Refineries, power plants, excitation circuits. Energy saving, as no current is drained when the contactor is activated.
Contactor staying activated for long periods. Examples: refineries, alimentation energy, ST distribution.	
Change of state "Work" / "Rest" by current pulse sent to the coil.	Selective opening control.
Insensitivity to main perturbations.	No unexpected opening or closing of power poles
Use of contactors beyond breaking capacity as they are activated off-load.	Passer diverter, for use with 1000 V
Silent contactor when locked in ON position	

Electro-magnet operation of the CR1B contactors

The CR1B magnetic latching contactors are equipped with a single coil, supplied with direct current or alternating current through a rectifier.
The latching is obtained by direct feeding of the coil with a current in a given direction. The unlatching is produced by a current of opposite direction, adjusted by resistors.

Range

■ The magnetic latching contactors are available from 80 to 630 A (Size F to K).
■ The characteristics of N/O and N/C poles are identical to those of CV1 and CV3B
(Size F to K).
■ For other characteristics and mounting dimensions, please contact us.
■ For ratings of 800 to 2750 A , see next page.

Selection criteria of contactors for rotor starting motors

In simple starting systems the contactors which short-circuit the rotor current are subjected to a static voltage, the value of which, decreasing with time, is lower the further away the contactors are located from the rotor terminals. As a result, the operational rotor voltage is deducted from the maximum operational voltage. In this way, it is possible to use contactors with a rated insulation voltage lower than the rotor voltage.

In this application, making and breaking are easy. The selection table below takes into account a ratio of 2 between the maximum rotor operational voltage (Uer) and the stator operational voltage (Ues). This ratio is proposed in starter standard IEC 60947-4.

With counter current braking, the rotor operational voltage will be equal to the insulation voltage.

In a system with slowdown or braking, the selection of the contactors concerned should, in addition, take into account the breaking conditions.

The use of magnetic blow-out contactors is recommended in the event of control by a manually operated master controller.

Multiplying factor for rotor voltage and current, depending on type of contactor connection

As far as the current flowing through a rotor circuit contactor is concerned, the short time rating should be taken into account according to the starting time. Only the final rotor short-circuit contactor takes account of the continuous current.

| Type
 of
 connection
 diagram | I rotor
 I
 operational
 3-phase
 rotor
 voltage Ue | 3-phase rotor
 voltage UE
 with counter-
 current braking |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Star | | |

Hoisting applications
For this type of application contactor selection is made according to the duty requirements, required durability, type of connection, etc.
Please consult your Regional Sales Office.

Other versions: For rotor voltage above 3000 V ~, please consult your Regional Sales Office.

TeSys

TeSys B Bar mounted contactors

From specification of customer's application - CE, CS, CV1BKS contactors

Contactors for furnaces and induction heating applications (CE1-CS1, CE5-CE6, CS5-CS6)

Induction heating covers all applications where metals (or a metal part) are heated in crucible or "channel" furnaces, or in dies, by the induction of a.c. currents at various frequencies.
There are several frequency ranges which, for industrial purposes, can be grouped as follows:
■ 50 Hz to 400 Hz :

- industrial mains power frequencies from 50 to 250 Hz
- intermediate frequencies of 350 Hz and 400 Hz .

■ Maximum operating limits for contactors (single-pole and 6-pole):
\square frequency range up to 500 Hz

- supply voltage up to 3000 V
- currents up to 2750 A .

Please refer to our "Contactors for furnaces and induction heating applications" catalogue.

Contactor for the grounding of supply rail tram (CV1BKS)
Designed for networks up to 1000 V DC (high closing capacity up to 43 kA) to ensure the grounding of the rail when it loses power.
But also under fault condition in the event that the rail remains supplied after the passage of the tram.
View the application form CV1BKS on the site: www.se.com.

Download the configuration software "bar contactor soft-customer.xls" on:
https://www.se.com/ww/en/product-range-download/667-tesys-b/\#/software-firmware-tab

(1) Standard delivery time: 3 weeks, from receipt of order. For faster delivery, please consult your Regional Sales Office.

| For use by Schneider Electric |
| :--- | :--- |
| Poles |
| |
| Ref: |
| Ref: |

Contactor reference*

* 3 possibilities

1) Device with symbol combination (see drwg 1492177 2) Device n° defined on the basis of this form Type/size/order nº/year. E.g.: CV1GB000599 3) Reference defined to "specification"

B10/43

[^0]: For voltages other than those listed above, please consult us.

[^1]: \star K to R rating：please consult us．
 （3） 1 auxiliary contact type ZC4GM1（code 1）or 1 auxiliary contact type ZC4GM2（code 2） or 1 auxiliary contacts block type LA1BN32（3 N／O contacts +2 N／C contacts）（code A） or 2 auxiliary contacts blocks type LA1BN32（ 6 N／O contacts +4 N／C contacts）（code B）．

