# **Measurement and control relays - Zelio Control**

Industrial relays

Current measurement relays RM4 J

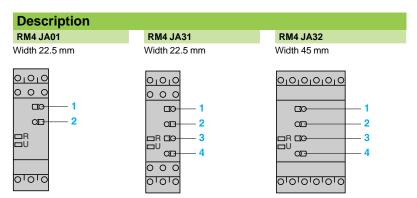


RM4 JA01



RM4 JA32

### **Functions**


These devices are designed to detect when current rises above or drops below a preset threshold, on an a.c. or a d.c. supply.

They have a transparent, hinged flap on their front face to avoid any accidental alteration of the settings. This flap can be directly sealed.

| Relay type | Overcurrent detection | Overcurrent or<br>undercurrent<br>detection (1) | Measuring range |
|------------|-----------------------|-------------------------------------------------|-----------------|
| RM4 JA01   | Yes                   | No                                              | 3 mA1 A         |
| RM4 JA31   | Yes                   | Yes                                             | 3 mA1 A         |
| RM4 JA32   | Yes                   | Yes                                             | 0.3 A15 A       |

#### Applications:

- excitation control of d.c. machines,
- control of load state of motors and generators,
- control of current drawn by a 3-phase motor,
- monitoring of heating or lighting circuits,
- control of pump draining (undercurrent),
- control of overtorque (crushers),
- monitoring of electromagnetic brakes or clutches.



- 1 Adjustment of current threshold as % of setting range max. value.
- 2 Hysteresis adjustment from 5 to 30 % (2).
- 3 Fine adjustment of time delay as % of setting range max. value.
- 4 10-position switch combining:
- selection of the timing range: 1 s, 3 s, 10 s, 30 s, no time delay,
- selection of overcurrent (>) or undercurrent (<) detection.

# See table below.

- R Yellow LED: indicates relay state.
- **U** Green LED: indicates that supply to the RM4 is on.

| Table showing details for | r switch 4             |                |  |
|---------------------------|------------------------|----------------|--|
| Switch position           | Function               | Time delay (t) |  |
| < 0                       | Undercurrent detection | No time delay  |  |
| <1                        | Undercurrent detection | 0.05 to 1 s    |  |
| < 3                       | Undercurrent detection | 0.15 to 3 s    |  |
| < 10                      | Undercurrent detection | 0.5 to 10 s    |  |
| < 30                      | Undercurrent detection | 1.5 to 30 s    |  |
| > 0                       | Overcurrent detection  | No time delay  |  |
| >1                        | Overcurrent detection  | 0.05 to 1 s    |  |
| >3                        | Overcurrent detection  | 0.15 to 3 s    |  |
| > 10                      | Overcurrent detection  | 0.5 to 10 s    |  |
| > 30                      | Overcurrent detection  | 1.5 to 30 s    |  |

- (1) Selection by switch on front face.
- (2) Value of current difference between energisation and de-energisation of the output relay (% of the current threshold to be measured).

# **Measurement and control relays - Zelio Control**

Industrial relays Current measurement relays RM4 J

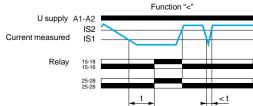
# **Operating principle**

The supply voltage is connected to terminals A1-A2.

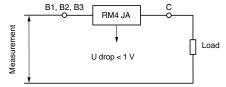
The current to be monitored is connected to terminals B1, B2, B3 and C. See diagram below.

Hysteresis is adjustable between 5 and 30 %: for **overcurrent** h = (IS1 - IS2) / IS1, for **undercurrent** h = (IS2 - IS1) / IS1.

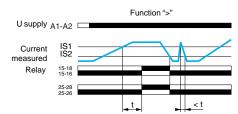
A measuring cycle lasts only 80 ms, which allows rapid detection of changes in current


Relay set for overcurrent detection (RM4 JA01 or selector on ">" for model RM4 JA3•).

If the current is > the setting threshold IS1, the output relay is energised with or without a time delay, depending on the model. When the current returns to a value IS2 below the threshold, depending on the hysteresis setting, the relay is instantaneously de-energised.


Relay set for undercurrent detection (selector on "<", model RM4 JA3• only). If the current is <, the setting threshold IS1, the output relay is energised with or without a time delay, depending on the model. When the current returns to a value IS2 above the threshold, depending on the hysteresis setting, the relay is instantaneously de-energised.

## **Function diagrams**


- Functions
- □ Undercurrent detection



t : time delay



### □ Overcurrent detection



t: time delay

**Note**: The measurement ranges can be extended by means of a current transformer, the secondary of which is connected to the measuring terminals of the RM4 relay, or by means of a resistor connected in parallel with the measuring input (see example page 28471/7 "Setting-up").

# Measurement and control relays -Zelio Control Industrial relays Current measurement relays RM4 J

1...5 A 3...15 A



RM4 JA01

| Overcurre  | nt detection                                         | l     |                 |                                                                          |        |
|------------|------------------------------------------------------|-------|-----------------|--------------------------------------------------------------------------|--------|
| Time delay | Current to be measured depending on connection  ∼ or | Width | Output<br>relay | Basic reference,<br>to be completed by<br>adding the voltage<br>code (1) | Weight |
| s          |                                                      | mm    |                 |                                                                          | kg     |
| Without    | 330 mA<br>10100 mA<br>0.11 A                         | 22.5  | 1 C/O           | RM4 JA01●                                                                | 0.172  |

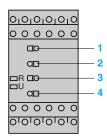


RM4 JA32

| Adjustable time delay | Current to be measured depending on connection | Width | Output<br>relay | Basic reference,<br>to be completed by<br>adding the voltage<br>code (1) | Weight |
|-----------------------|------------------------------------------------|-------|-----------------|--------------------------------------------------------------------------|--------|
| s                     |                                                | mm    |                 |                                                                          | kg     |
| 0.0530                | 330 mA<br>10100 mA<br>0.11 A                   | 22.5  | 2 C/O           | RM4 JA31●●                                                               | 0.172  |
|                       | 0.3 1.5 A                                      | 45    | 2 C/O           | RM4.JA32                                                                 | 0 204  |

| (1) Standard sup | pply voltages   |       |        |        |        |
|------------------|-----------------|-------|--------|--------|--------|
| RM4 JA01         | Volts           | 24    | 110130 | 220240 |        |
|                  | $\sim$ 50/60 Hz | В     | F      | M      |        |
| RM4 JA31         | Volts           | 24240 | 110130 | 220240 | 380415 |
| and RM4 JA32     | ∼ 50/60 Hz      | MW    | F      | M      | Q      |
|                  | =               | MW    | _      | _      | _      |

# Measurement and control relays - Zelio Control


Industrial relays

Current measurement relays RM4 J

# **Setting-UP**

### Example of overcurrent to be measured

Overcurrent threshold at: 13 A. Output relay time delay: 5 s. Reset current threshold: 11 A Supply voltage: 127 V ==



Product selected RM4 JA32MW

Connection of current to be measured B3-C (3 to 15 A)

### ■ Adjustments:

- ☐ Adjustment of function and timing range, switch 4:
- determine whether overcurrent or undercurrent detection is required; in this example, overcurrent,
- determine the timing range, immediately greater than the time required; in this example 10 s.
- position switch 4 according to the above 2 criteria; in this example, switch 4 on > 10. □ Fine adjustment of time delay:

Depending on the max. range setting displayed at 4 (in the above example: 10 s) use potentiometer 3 to set the required time delay as a % of value 4. In the above example, the required time = 5 s therefore:

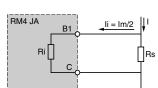
 $\frac{t \times 100}{4} = \frac{5 \times 100}{10} = 50\%$  Set the time delay potentiometer 3 to 50.

☐ Set the current threshold setting potentiometer 1 as a percentage of the maximum value of the measuring range selected when wiring.

In the above example: wiring B3-C, max. value of measuring range = 15 A, therefore:

Setting  $1 = \frac{13 \times 100}{15} = 87\%$  Set the current threshold setting potentiometer 1 to 87.

☐ Set the hysteresis 2 as a % of the threshold value; in this example:


Setting  $2 = \frac{13 - 11}{13} = 15.4 \%$  Set the hysteresis 2 to 15 (13 - 11 = 2 i.e. 15.4 % of the current to be measured).

### Extension of the measuring range

# ■ d.c. or a.c. supply

Simply connect a resistor "Rs" to terminals B1-C (or B2, B3-C) on the measuring input.

The relay energisation threshold will be towards the middle of the setting potentiometer range if the value of Rs is in the region of:



$$s = \frac{Ri}{(2I/Im) - 1}$$
 where:

Ri Internal resistance of input B1-C,

Im Maximum value of threshold setting range,

5

I Current threshold to be measured.

Power dissipated by Rs: P = Rs (I -Im/2)<sup>2</sup>

## ■ Application:

Use of relay RM4 JA31 • (10 to 100 mA).

Connection B2-C to measure a threshold of 1 A, knowing that Ri = 10  $\Omega$  for this rating and that Im = 100 mA.

The value of Rs will be:  $\frac{10}{(2 \times 1/0.1) - 1} = 0.526 \Omega$ 

$$P = (1 - \frac{0.1}{2})^2 \times 0.526 \text{ i.e. } 0.47 \text{ W}$$

Select a resistor Rs capable of dissipating at least twice the calculated value, i.e.

1 W for this example, in order to limit temperature rise.

On an a.c. supply, it is also possible to use a current transformer.